
  

Computing for Math and Stats

Lecture 16.



  

Fitting Polynomials

● One can find a polynomial that approximates given data
● Data is in the form of pairs

– xi, yi

● We can have many such pairs.
● If the number of pairs is the same as the number of 

unknowns (the coefficients of the polynomial) we can 
use simple linear equations.

● If we have more data than unknowns we use least 
squares



  

Least Squares

● A general method, not only for polynomial fitting
● One of the most used methods in science and 

engineering
● The basis of most other model fitting methods
● Fast, accurate and well understood
● Many variations exist
● Unfortunately does not apply to all problems



  

Example: first degree model

y (x )=a1 x+a0

(x0 , y0) ,(x1 , y1) , ... ,(xM , yM )



  

Finding the coefficients

● Set up an expression that is the sum of squares
● If there was a solution the expression would be zero
● Minimize using derivatives w/r to the unknown 

coefficients
● Simplify to set up the equations
● Solve the equations using linear algebra techniques
● The equations are always linear for this kind of 

problems



  

The Expression
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The derivatives
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The Derivatives
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The Equations

● Remember these equations?

a0 x1
0+a1 x1

1+a2 x1
2+⋯+aN x1

N= y1

a0 x2
0
+a1 x2

1
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+⋯+aN x2
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= y2

a0 x3
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2
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a0 xM
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2
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N
= yM

⋮



  

The Equations

● Or this system of equations
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The Equations

● The original (over-determined) equations:
● The Least Squares equations:
● And their relation:

X A=Y

B=XTY

Q=XT X

Q A=B



  

Solving the Equations

● Matrix Q is in general invertible (if the points are distinct and have 
enough of them)

● It is also symmetric and positive definite
● This means it is relatively easy to invert (needs fewer operations 

and has little round-off error)
– See mypolyfit.m

● But not always
– Polynomials involve large powers
– This means a mix of huge and tiny numbers

● We often use QR decomposition to invert.
– See mypolyfit1.m 



  

Interpolation

● A common use for polynomial fitting
● Given the value of a function on distinct points 

find the value of the function in between
● There are many ways to do it

– Nearest
– Linear
– Cubic (spline, Hermite)

● See interpex.m
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