
York University EECS3101 January 16, 2023

Notes on the Boyer-Moore Algorithm

In class we discussed the Boyer-Moore algorithm for finding the majority element in an array A[1..n]
(i.e., a value that appears in more than half of the array’s entries) if such a majority element exists. Even
though the algorithm and the problem it solves are quite simple, it takes a bit of work to see exactly why it
is correct. Here is a more detailed version of the argument covered in the lecture.

We use the notation matches(x, i) to be the number of occurrences of x in A[1..i] and nonmatches(x, i)
to be the number of elements in A[1..i] that are not equal to x.

Intuitively, after i iterations of the first loop, cand keeps track of the candidate for the majority element
in A[1..i− 1] and count keeps track of its margin of victory. This invariant is stated more precisely on line
4, below.

1: function Boyer-Moore(A[1..n])
2: count← 0
3: for i← 1..n do
4: Invariant: if for some x, matches(x, i− 1) > i−1

2 , then matches(cand, i− 1) > i−1
2 and

count = matches(cand, i− 1)− nonmatches(cand, i− 1)
5: if count = 0 then cand← A[i]
6: end if
7: if A[i] = cand then count + +
8: else count−−
9: end if

10: end for
11: . Now check if cand really is a majority
12: count← 0
13: for i← 1..n do
14: Invariant: count = matches(cand, i− 1)
15: if A[i] = cand then count + +
16: end if
17: end for
18: if count > n/2 then return cand is a majority
19: else return there is no majority
20: end if
21: end function

Let’s check that the first loop’s invariant is correct at the beginning of every iteration of that loop. We
use candi and counti to denote the values of the variables cand and count after i iterations of the loop.

Base Case: After 0 iterations of the loop, i = 1 and matches(x, 0) = 0 for all x, so there is no x with
matches(x, i− 1) > i−1

2 .
Induction Step: Let i ≥ 1. Assume the invariant holds at the start of iteration i. We wish to show

that it holds at the start of the iteration i + 1.
Assume some element x is a majority element in A[1..i], i.e.,

matches(x, i) >
i

2
. (1)

We wish to prove that matches(candi, i) > i
2 and counti = matches(candi, i) − nonmatches(candi, i). We

consider two cases.
Case 1: counti−1 = 0. If there were a majority element in A[1..i− 1], then by the induction hypothesis,

counti=1 would have to be its margin, which would have to be at least 1. Thus, no element is a majority in
A[1..i− 1]. In particular, we have

matches(x, i− 1) ≤ i− 1

2
. (2)

If A[i] 6= x, then matches(x, i) = matches(x, i− 1) ≤ i−1
2 < i

2 , contradicting (1). So A[i] must be x. Since
counti−1 = 0, the ith iteration executes line 5, so candi = A[i] = x. Then, the iteration executes line 7, so
counti = 1. So, by (1), matches(candi, i) >

i
2 .

1 over. . .



It remains to show that counti is correct.

matches(candi, i) = matches(candi, i− 1) + 1 since A[i] = cand

≤ i− 1

2
+ 1 by (2)

=
i + 1

2

Since matches(candi, i) >
i
2 , we must have matches(candi, i) = i+1

2 . So,

matches(candi, i)− nonmatches(candi, i) = matches(candi, i)− (i−matches(candi, i))

=
i + 1

2
− (i− i + 1

2
)

= 1

= counti.

Case 2: counti−1 ≥ 1. This means that candi−1 is a majority in A[1..i − 1] and counti−1 ≥ 1 is its
margin of victory in A[1..i− 1]. From the latter statement, we have:

matches(candi−1, i− 1)− nonmatches(candi−1, i− 1) ≥ 1

matches(candi−1, i− 1)− (i− 1−matches(candi−1, i− 1)) ≥ 1

2 ·matches(candi−1, i− 1) ≥ i

matches(candi−1, i− 1) ≥ i

2

Thus, no value other than candi−1 can be a majority in A[1..i], so x = candi−1.
In this case, the test on line 5 fails, so candi = candi−1 = x and matches(candi, i) >

i
2 by (1). We just

have to check that line 7 or 8 updates the margin appropriately.
If A[i] = x, then

counti = counti−1 + 1 = matches(x, i− 1)− nonmatches(x, i− 1) + 1 = matches(x, i)− nonmatches(x, i).

If A[i] 6= x, then

counti = counti−1 − 1 = matches(x, i− 1)− nonmatches(x, i− 1)− 1 = matches(x, i)− nonmatches(x, i).

This completes the proof that the first loop’s invariant holds at every iteration. Thus, when the loop
exits, cand will be the majority element in A[1..n] if a majority exists. It is straightforward to see that the
second loop just checks whether cand is indeed a majority in A[1..n].

2


