York University EECS3101 January 16, 2023

Notes on the Boyer-Moore Algorithm

In class we discussed the Boyer-Moore algorithm for finding the majority element in an array A[l..n]
(i.e., a value that appears in more than half of the array’s entries) if such a majority element exists. Even
though the algorithm and the problem it solves are quite simple, it takes a bit of work to see exactly why it
is correct. Here is a more detailed version of the argument covered in the lecture.

We use the notation matches(z,1) to be the number of occurrences of x in A[l..7] and nonmatches(x,1)
to be the number of elements in A[1..i] that are not equal to x.

Intuitively, after ¢ iterations of the first loop, cand keeps track of the candidate for the majority element
in A[l..i — 1] and count keeps track of its margin of victory. This invariant is stated more precisely on line
4, below.

1: function BOYER-MOORE(A[L..n])

2: count < 0
3: for i + 1..n do
4: Invariant: if for some z, matches(z,i — 1) > 52, then matches(cand, i — 1) > =1 and
count = matches(cand,i — 1) — nonmatches(cand,i — 1)
5: if count = 0 then cand < Ali]
6: end if
7: if A[i] = cand then count + +
8: else count — —
9: end if
10: end for
11: > Now check if cand really is a majority
12: count < 0
13: for i +— 1.n do
14: Invariant: count = matches(cand,i — 1)
15: if A[i] = cand then count + +
16: end if
17: end for
18: if count > n/2 then return cand is a majority
19: else return there is no majority
20: end if

21: end function

Let’s check that the first loop’s invariant is correct at the beginning of every iteration of that loop. We
use cand; and count; to denote the values of the variables cand and count after i iterations of the loop.

Base Case: After 0 iterations of the loop, ¢ = 1 and matches(z,0) = 0 for all x, so there is no x with
matches(z,i — 1) > L.

Induction Step: Let i > 1. Assume the invariant holds at the start of iteration i. We wish to show
that it holds at the start of the iteration ¢ + 1.

Assume some element z is a majority element in A[l..9], i.e.,

7
matches(x,i) > 7 (1)
We wish to prove that matches(cand;, i) > % and count; = matches(cand;, i) — nonmatches(cand;, i). We
consider two cases.
Case 1: count;—1 = 0. If there were a majority element in A[1..i — 1], then by the induction hypothesis,
count;—, would have to be its margin, which would have to be at least 1. Thus, no element is a majority in

A[l..i — 1]. In particular, we have
i — 1
matches(z,i — 1) < ! 5 (2)

If A[i] # x, then matches(z,i) = matches(z,i — 1) < ‘51 < %, contradicting (1). So A[i] must be z. Since
count;—1 = 0, the ith iteration executes line 5, so cand; = Ali] = z. Then, the iteration executes line 7, so
count; = 1. So, by (1), matches(cand;,i) > 5.

1 OVER. ..



It remains to show that count; is correct.

matches(cand;,i) = matches(cand;,i —1)+1 since A[i] = cand
p— 1
< ! 5 +1 by (2)
i+
2

)

Since matches(cand;, i) > 5, we must have matches(cand;, i) = % So,

matches(cand;, i) — nonmatches(cand;, i) = matches(cand;,i) — (i — matches(cand;, 1))
il il
= 5 U
=1
= count;.

Case 2: count;—1 > 1. This means that cand;_; is a majority in A[l..i — 1] and count;—1 > 1 is its
margin of victory in A[l..i — 1]. From the latter statement, we have:

matches(cand;_1,1 — 1) — nonmatches(cand;—1,i—1) > 1
matches(cand;—1,i — 1) — (i — 1 — matches(cand;—1,i — 1)) > 1
2 - matches(cand;—1,i—1) > i

matches(cand;—1,i — 1) > %

Thus, no value other than cand;_; can be a majority in A[l..7], so z = cand;_1.

In this case, the test on line 5 fails, so cand; = cand;—1 = = and matches(cand;,i) > % by (1). We just
have to check that line 7 or 8 updates the margin appropriately.

If A[{] = x, then

count; = count;—1 + 1 = matches(x,i — 1) — nonmatches(x,i — 1) + 1 = matches(z,i) — nonmatches(x,1).
If A[i] # x, then
count; = count;_1 — 1 = matches(x,i — 1) — nonmatches(z,i — 1) — 1 = matches(x, i) — nonmatches(z,1).

This completes the proof that the first loop’s invariant holds at every iteration. Thus, when the loop
exits, cand will be the majority element in A[l..n] if a majority exists. It is straightforward to see that the
second loop just checks whether cand is indeed a majority in A[l..n].



