

Computing for Math and Stats

Lecture 9.

Conditional execution

● We often want our program to decide whether to
execute one command or another (or none)
– Example: The absolute value of a real number x is x if

positive and -x if negative

● Matlab (like any other language) has conditional
statements

● Conditional statements check a condition and if true
execute a group of statements, otherwise execute
another group of statements (or no statements)

Conditional Statements

● Absolute value of x
– if x>=0

● absx=x;

– else
● absx=-x;

– end

Conditions

● Conditions can be simple like
– x>0

● We often need quite complex conditions
● We have a whole set of relational operators

– They are: >, <, >=, <=, ==, ~=

● We also have a set of logical operators
– They are: and() [&], or() [|], not() [~]

Conditions

● When we want both x and y to be positive
– x>0 & y>0

● When we want at least one of them to be positive
– x>0 | y>0

● When we want none of them to be positive
– x<=0 & y<=0 or...
– ~(x>0 | y>0)

● There can be more than one way to express a condition.
Usually one of them is less computationally expensive

What is True?

● This is not a philosophy question
● What do we get when we run

– A = x>2

● In Matlab 1 is true and 0 is false
– Question: what does Matlab think of numbers other than 0 or 1?
– This is a Matlab (and C and a few other) convention
– In other systems/languages we have different conventions

● T and nil in Lisp
● 0 and non-zero in bash
● True and False in other systems

● It is defined so for convenience (not philosophy)

Precedence

● When we have a numerical expression
– a+b*c

● We all understand it as
– a+(b*c)

● Old calculators understood it as
– (a+b)*c

● Matlab understands it the way we all do
● See weird.m

Precedence

● Matlab precedences are as follows
– Parentheses
– Exponentiation
– Logical not (~)
– Multiplication, division
– Addition, subtraction
– Relational ops. (<, >, etc)
– Logical and (&)
– Logical or (|)

How to Remember Precedences

● Hard
● Even if you do, the one that reads your code may not
● The golden rule:

– When in doubt, parenthesize

● Different languages may have different (very slightly)
precedences

● One thing to remember is that Matlab (and several
other languages) has weird precedence for not (~)

Other Logical Operators

● In theory there are 16 logical operators (with
two operants/arguments)

● Most of them are not needed in programming
● We need some others that take as

operand/argument a vector

Other Logical Operators

● These are
– xor(a,b)

● Exclussive or

– all(A)
● Returns true (1) if all elements of A are true

– any(A)
● Returns true (1) if any element of A is true

– find(A)
● Returns the indices for which A is true (non zero)

The “if” statement

● Conditional statements use conditional
expressions

● The most common conditional statement is the
if statement aka if ... end

● Allows a block of statements to be executed or
not executed depending on a condition.

The simplest version of if...end

● We use this to execute or not execute a group
of statements
– if <some condition>

● Stmnt 1
● Stmnt 2...

– end

● We can have as many statements in the block
as we want

The if-then-else form

● We use this to choose between two (or more) blocks of statements
● if <condition>

– Stmnt1
– Stmnt2

● elseif <condition>
– Stmnt5...

● else
– Stmnt3
– Stmnt4

● end
● See piecewise.m

Indentation

● Blocks of statements whithin the if-else (ot the if-end or
the else-end, etc), have to be indented

● Indentation means prepending a “few” blanks to
statements within enclosed blocks

● “few” means usually 2-4 blanks. Asways the same number
● Real editors do it automatically

– The Matlab editor does a pretty good job.

● Indentation helps with code readability
● Lack of indentation screams “Amateur”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

