Digital data representation

Topic for the next few weeks

Representing Numbers

Representing Texts

Representing Audio

Representing Images and graphics

Representing Videos

1 + 1 = 10 ?!?

Examples provided by Jones & Bartlett Learning

Positional representation

- Decimal (base 10)
- Binary (base 2)
- Octal (base 8)
- Hexadecimal (base 16)
- Conversion between different bases
 - Binary, hex, oct to decimal (recap)
 - Binary to/from hex and octal
 - Decimal to binary, hex, octal

Signed binary representation – 2's complement

- 2's complement (binary) to decimal
- Decimal to 2's complement (binary)

Binary representation of fractions

- Binary to decimal
- Decimal to binary

Positional representation

- Decimal (base 10)
- Binary (base 2)
- Octal (base 8)
- Hexadecimal (base 16)
- Conversion between different bases
 - Binary, hex, oct to decimal (recap)
 - Binary to/from hex and octal
 - Decimal to binary, hex, octal

Signed binary representation – 2's complement

- 2's complement (binary) to decimal
- Decimal to 2's complement (binary)

Binary representation of fractions

- Binary to decimal
- Decimal to binary

Numbers

Natural numbers

Zero and any number obtained by repeatedly adding one to it.

Examples: 100, 0, 45645, 32

Negative whole numbers

Values less than 0, indicated with a "--" sign before the left-most digit

Examples: -24, -1, -45645, -32

Side note: Hyphen -, Minus –, N-dash –, and M-dash — are four different typographical symbols; use them correctly in your writing See https://en.wikipedia.org/wiki/Dash for details

Numbers

Integers

Values that are either a natural number, or a negative whole number

Examples: 249, 0, -45645, -32

Rational Numbers

Values that are integers, or the quotient of two integers

Examples: -249, -1, 0, 3/7, -2/5

NOTE: π , *e*, $\sqrt{2}$, $\sqrt{5}$... are *irrational* numbers

• How many ways can we represent the numeric value "five"?

 Image: Image:

AGES 3+

Melissa & Dougo

EECS1520: Representing Numbers

amazon.com

428\$ four hundreds and twenty-eight248\$ two hundreds and forty-eight

1820\$ One thousand, eight hundreds and twenty2108\$ two thousand, one hundreds and eight

Decimal, how many letters

• Each column of a number represents a power of the base. The exponent is the order of magnitude for the column

$10^4 \quad 10^3 \quad 10^2 \quad 10^1 \quad 10^0$

 The Decimal system is based on the number of digits we (usually) have

 The magnitude of each column is the base, raised to its exponent

 The magnitude of a number is determined by multiplying the magnitude of the column by the digit
EECS1520 in the column and summing the products

 The magnitude of a number is determined by multiplying the magnitude of the column by the digit in the column and summing the products

Positional representation

- Decimal (base 10)
- Binary (base 2)
- Octal (base 8)
- Hexadecimal (base 16)
- Conversion between different bases
 - Binary, hex, oct to decimal (recap)
 - Binary to/from hex and octal
 - Decimal to binary, hex, octal

Signed binary representation – 2's complement

- 2's complement (binary) to decimal
- Decimal to 2's complement (binary)

Binary representation of fractions

- Binary to decimal
- Decimal to binary

Non-Decimal Number Systems

Number can be in any base, 2, 3, 4, ..., 8, 9,10,11... 16

Decimal is base 10 and has 10 digit symbols:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Binary is base 2 and has 2 digit symbols:

0,1 $\begin{bmatrix} 0 \sim 2-1 \end{bmatrix}$ Octal is base 8 and has 8 digit symbols: 0,1,2,3,4,5,6,7 $\begin{bmatrix} 0 \sim 8-1 \end{bmatrix}$ Hexdecimal is base 16 and has 16 digit symbols:

0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F [<mark>0~16-1</mark>

For a value to exist in a given base, it can only contain the digits in that base, which range from 0 up to (but not including) the base.

What bases can these values be in? 122, 198, 178, G1A4

[0 ~ base-1]

An *n*-digit unsigned integer in base *b* (d_i is the digit in the *i*th position in the number) The number: $\begin{pmatrix} d_{n-1} & d_{n-2} & \dots & d_i & \dots & d_1 & d_0 \end{pmatrix}_b$

Its value = $d_{n-1} \times b^{n-1} + d_{n-2} \times b^{n-2} + \dots + d_i \times b^i \dots + d_1 \times b^1 + d_0 \times b^0$

Examples:

 $(642)_{10} = 6 \times 10^{2} + 4 \times 10^{1} + 2 \times 10^{0} = 642$ $(5073)_{8} = 5 \times 8^{3} + 0 \times 8^{2} + 7 \times 8^{1} + 3 \times 8^{0} = 2619$ $(1011)_{2} = 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} = 11$

Binary

Binary is base 2 and has 2 digit symbols: 0,1

Binary

Binary is base 2 and has 2 digit symbols: 0,1

Binary is base 2 and has 2 digit symbols: 0,1

0010 Not 10 checkback

Binary Numbers and Computers

Computers have storage units called binary digits or bits

EECS1520: Representing Numbers

- Bit/byte/K/M/G/T
- int x;

Decimal Notation

base 10 or radix 10 ... uses 10 symbols

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

- Position represents powers of 10
- 5473₁₀ or 5473

 $(5 * 10^3) + (4 * 10^2) + (7 * 10^1) + (3 * 10^0)$

Binary Notation

base 2 ... uses only 2 symbols

0, I

- Position represents powers of 2
- 11010₂

 $(1 * 2^{4}) + (1 * 2^{3}) + (0 * 2^{2}) + (1 * 2^{1}) + (0 * 2^{0}) = 26$

7 6 5 4 3 2 1 0

EECS1520: Representing Numbers

2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0

Set each binary digit for the unsigned binary number below to 1 or 0 to obtain the decimal equivalents of 9, then 50, then 212, then 255. Note also that 255 is the largest integer that the 8 bits can represent.

2³ 2⁵ **2**⁴ **2**² 26 20 27 2^{1} 32 128 64 8 2 16 4 n +0 +0 +0 + 0 + 0+0+0() =()

There is also a representation for zero, giving 256 (2⁸) possible combinations of 0 and 1 in 8 bits

1 bit: **2** values (0, 1); **2** bits: **4** values (00, 01, 10, 11); ...

Every one **bit** added *doubles* the range of values

255 is the largest value (in decimal) that can be expressed using 8 bits

Max using 2 bits? Max using 4 bits?

Binary representations

Binary Value						Decimal Representation					Decimal Value	
Since, Value					8	4		2		1	Decimal value	
	0	0	0	0	0	+ 0	+	0	+	0	0	
	0	0	0	1	0	+ 0	+	0	+	1	1	
	0	0	1	0	0	+ 0	+	2	+	0	2	
	0	0	1	1	0	+ 0	+	2	+	1	3	
	0	1	0	0	0	+ 4	+	0	+	0	4	
	0	1	0	1	0	+ 4	+	0	+	1	5	
	0	1	1	0	0	+ 4	+	2	+	0	6	
	0	1	1	1	0	+ 4	+	2	+	1	7	
	1	0	0	0	8	+ 0	+	0	+	0	8	
	1	0	0	1	8	+ 0	+	0	+	1	9	
65	1	0	1	0	8	+ 0	+	2	+	0	10	
00	8	4	2	1								

Binary, Oct and Hex to Decimal

7

10

26

87

162

Give the Decimal equivalent of the following

- Binary 000...010₂ 2
- Binary 000.....0111₂
- Binary 000.....1010₂
- Binary 000...11010 2
- Binary 000...1010111 2
- Binary 000...10100010 2

EECS1520: Representing Numbers

Arithmetic in Binary

Remember that there are only 2 digit symbols in binary, 0 and 1

Binary representations, arithmetic

• 3 + 4 ?

00...0 0 1 1 00...0 1 0 0 00...0 1 1 1 7

•
$$3 + 7?$$

0 0...0 0 1 1
0 0...0 1 1 1
0 0...1 0 1 0
10

$$\begin{array}{c} 3+1?\\ & & \\ 00...0011\\ \underline{00...0001}\\ 00...0100 \\ \end{array}$$

•
$$3 + 5?$$

0 0...0 0 1 1
0 0...0 1 0 1
0 0...1 0 0 0 8

Remember that there are only 2 digit symbols in binary, 0 and 1

1 + 1 is 0 with a carry 1+1+1 is 1 with a carry

> 1 0 1 1 1 1 1 1 0 1 0 1 1 1 <u>+1 0 0 1 0 1 1</u>

162

87

75

Representing Numbers

Positional representation

- Decimal (base 10)
- Binary (base 2)
- Octal (base 8)
- Hexadecimal (base 16)
- Conversion between different bases
 - Binary, hex, oct to decimal (recap)
 - Binary to/from hex and octal
 - Decimal to binary, hex, octal

Signed binary representation – 2's complement

- 2's complement (binary) to decimal
- Decimal to 2's complement (binary)

Binary representation of fractions

- Binary to decimal
- Decimal to binary

Octal Notation

For base B, B digit symbols [0~B-1]

base 8 ... uses 8 symbols

0, 1, 2, 3, 4, 5, 6, 7

- Position represents power of 8
- 15238

 $(1 * 8^3) + (5 * 8^2) + (2 * 8^1) + (3 * 8^0) = 851$

Hexadecimal Notation

base 16 or 'hex' ... uses 16 symbols

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

- Position represents powers of 16
- B65F₁₆ or 0xB65F

 $(|| * || 6^3) + (6 * || 6^2) + (5 * || 6^1) + (|| 5 * || 6^0) = 46687$

Octal is base 8 and has 8 digit symbols: 0,1,2,3,4,5,6,7

Must be 63, why?

Others To decimal

You should know these conversions.

Octal Notation

base 8 ... uses 8 symbols

0, 1, 2, 3, 4, 5, 6, 7

- Position represents power of 8
- 15238

 $(1 * 8^3) + (5 * 8^2) + (2 * 8^1) + (3 * 8^0) = 851$

Hexadecimal Notation

base 16 or 'hex' ... uses 16 symbols

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

- Position represents powers of 16
- B65F₁₆ or 0xB65F

 $(|| * || 6^3) + (6 * || 6^2) + (5 * || 6^1) + (|| 5 * || 6^0) = 46687$

BTW, not valid for base 8

Check with cleavebook

Check with cleavebook

(16²)

 (16^{1})

 (16°)

Others To decimal

Non-Decimal Number Systems

Number can be in any base, 2, 3, 4, ...8, 10, 13, 15, 16

Decimal is base 10 and has 10 digit symbols:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Binary is base 2 and has 2 digit symbols:

0,1

Octal is base 8 and has 8 digit symbols:

0,1,2,3,4,5,6,7

Hexdecimal is base 16 and has 16 digit symbols:

0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F

base 5 and has ? digit symbols

0,1,2,3,4

[0 ~ base-1]

base 7 and has ? digit symbols 0,1,2,3,4,5,6

For a value to exist in a given base, it can only contain the digits in that base, which range from 0 up to (but not including) the base.

What bases can these values be in? 122, 198, 178, G1A4

Representing Numbers

Positional representation

- Decimal (base 10)
- Binary (base 2)
- Octal (base 8)
- Hexadecimal (base 16)
- Conversion between different bases
 - Binary, hex, oct to decimal (recap)
 - Binary to/from hex and octal
 - Decimal to binary, hex, octal

Signed binary representation – 2's complement

- 2's complement (binary) to decimal
- Decimal to 2's complement (binary)

Binary representation of fractions

- Binary to decimal
- Decimal to binary

Positional Notation

An *n*-digit unsigned integer in base *b* (d_i is the digit in the *i*th position in the number) The number: $\begin{pmatrix} d_{n-1} & d_{n-2} & \dots & d_i & \dots & d_1 & d_0 \end{pmatrix}_b$

Its value = $d_{n-1} \times b^{n-1} + d_{n-2} \times b^{n-2} + ... + d_i \times b^i ... + d_1 \times b^1 + d_0 \times b^0$

Converting Binary to Decimal

What is the decimal equivalent of the binary number 1101110?

$$1 \times 2^{6} = 1 \times 64 = 64$$

+ 1 \times 2^{5} = 1 \times 32 = 32
+ 0 \times 2^{4} = 0 \times 16 = 0
+ 1 \times 2^{3} = 1 \times 8 = 8
+ 1 \times 2^{2} = 1 \times 4 = 4
+ 1 \times 2^{1} = 1 \times 2 = 2
+ 0 \times 2^{0} = 0 \times 1 = 0
= 110 in base 10

Converting Octal to Decimal

What is the decimal equivalent of the octal number 642?

642₈

$$6 \times 8^2 = 6 \times 64 = 384$$

+ $4 \times 8^1 = 4 \times 8 = 32$
+ $2 \times 8^0 = 2 \times 1 = 2$
= 418 in base 10

Converting Hexadecimal to Decimal

What is the decimal equivalent of the hexadecimal number DEF?

$$DEF_{16} \qquad D \ge 16^2 = 13 \ge 256 = 3328 \\ + E \ge 16^1 = 14 \ge 16 = 224 \\ + F \ge 16^0 = 15 \ge 15 \\ = 3567 \text{ in base 10}$$

Remember, the digit symbols in base 16 are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

98

Decima number	l Binary repres	Octa entation repre	Il Hex esentation rep	xadecimal resentation
0	0	0	0	
1	1	1	1	
2	10	2	2	
3	11	3	3	
4	100	4	4	
5	101	5	5	
6	110	6	6	
7	111	7	7	
8	1000	10	8	
9	1001	11	9	
10	1010	12	A	
11	1011	13	В	
12	1100	14	С	
13	1101	15	D	
14	1110	16	E	
15	1111	17	F	
16	10000	20	10	
a=16	a=10000 ₂	a= 20 ₈ a=	= 10 ₁₆	
a=76	a=1001100,	a= 114 。 a:	$= 4C_{16}$	

Positional Notation

An *n*-digit unsigned integer in base *b* (d_i is the digit in the *i*th position in the number) The number: $\begin{pmatrix} d_{n-1} & d_{n-2} & \dots & d_i \\ d_1 & d_0 \end{pmatrix}_b$

Its value = $d_{n-1} \times b^{n-1} + d_{n-2} \times b^{n-2} + \dots + d_i \times b^i \dots + d_1 \times b^1 + d_0 \times b^0$

Examples:

 $(642)_{10} = 6 \times 10^{2} + 4 \times 10^{1} + 2 \times 10^{0} = 642$ $(5073)_{8} = 5 \times 8^{3} + 0 \times 8^{2} + 7 \times 8^{1} + 3 \times 8^{0} = 2619$ $(1011)_{2} = 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} = 11$ $(3214)_{5} = = 434$

Representing Numbers

Positional representation

- Decimal (base 10)
- Binary (base 2)
- Octal (base 8)
- Hexadecimal (base 16)
- Conversion between different bases
 - Binary, hex, oct to decimal (recap)
 - Binary to/from hex and octal
 - Decimal to binary, hex, octal

Signed binary representation – 2's complement

- 2's complement (binary) to decimal
- Decimal to 2's complement (binary)

Binary representation of fractions

- Binary to decimal
- Decimal to binary

Large Numbers

255 is the largest integer that can be represented in 8 bits, but larger values can be represented with more bits.

For example, 27916 is represented by:

0110110100001100

Can you remember the Binary representation?

Short Forms for Binary

Because large numbers require long strings of Binary digits, short forms have been developed to help deal with them.

An early system used was called Octal It's based on the 8 patterns in 3 bits

Later system used was called Hexadecimal, It's based on the 16 patterns in 4 bits

Binary to/from others -- why Hex and Octal

I want an int with representation 0011011010000110 , how to denote it?

Inconvenient to write 0011011010000110

• 1 1 0 1 1 0 1 0 0 001 1 0

 $2^{13} \ 2^{12} \ 2^{11} \ 2^{10} \ 2^9 \ 2^8 \ 2^7 \ 2^6 \ 2^5 \ 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0$

8192 4096 1024 512 128 4 2 = 13958 Decimal

Easier way?

Short Forms for Binary - Octal

111	7
110	6
101	5
100	4
011	3
010	2
001	1
000	0

0011011010000110

Can be shortened by dividing the number into 3-bit chunks, starting from the least significant bit and replacing each with a single Octal digit

Short Forms for Binary - Octal

Binary to Octal Examples

Try these: 111100₂ 100101₂ 111001₂ 1100101₂

Hint: when the leftmost group has fewer than three digits, fill with zeroes from the left:

1100101 = 1 100 101 = 001 100 101

110011101

Binary to Octal Examples

Try these: $111100_2 = 74_8$ $100101_2 = 45_8$ $111001_2 = 71_8$ $1100101_2 = 145_8$

Hint: when the leftmost group has fewer than three digits, fill with zeroes from the left:

 $1100101 = 1\ 100\ 101 = 001\ 100\ 101$

$110011101_2 = 635_8$

Short Forms for Binary - Hexadecimal

0111	7	1111	F
0110	6	1110	Е
0101	5	1101	D
0100	4	1100	С
0011	3	1011	В
0010	2	1010	Α
0001	1	1001	9
0000	0	1000	8

It was later determined that using base 16 and 4 bit patterns would be more efficient

2 hex digits = 8 bits (1 byte)

Since there are only 10 numerical digits, 6 letters were added to complete the set of hexadecimal digits

Short Forms for Binary - Hexadecimal

0111	7	1111	F
0110	6	1110	Е
0101	5	1101	D
0100	4	1100	С
0011	3	1011	В
0010	2	1010	А
0001	1	1001	9
0000	0	1000	8

0011011010000110

can be short-formed by dividing the number into 4-bit chunks -- starting from the least significant bit (LSB) -- and replacing each with a single Hexadecimal digit.

0011011010000110

Short Forms for Binary - Hexadecimal

0111	7	1111	F
0110	6	1110	Е
0101	5	1101	D
0100	4	1100	С
0011	3	1011	В
0010	2	1010	А
0001	1	1001	9
0000	0	1000	8

Binary to/from others -- why Hex and Octal

"I want an int with representation 0011011010000110, how to code it in C?"

6

3686₁₆

8

You should know these conversions (both ways).

3

6

easier

Binary to/from others -- why Hex and Octal

I want an int with representation 01001100, how to denote it?

You should know these conversions (both ways).

Binary to Hexadecimal Examples

Try these: 11011100₂ 10110101₂ 10011001₂ 110110101₂

Hint: when the leftmost group has fewer than four digits, fill with zeroes on the left:

 $110110101 = 1\ 1011\ 0101 = 0001\ 1011\ 0101$

1101001011101_2

Binary to Hexadecimal Examples

Try these: $11011100_2 = DC_{16}$ $10110101_2 = B5_{16}$ $10011001_2 = 99_{16}$ $110110101_2 = 1B5_{16}$

Hint: when the leftmost group has fewer than four digits, fill with zeroes on the left:

 $110110101 = 1\ 1011\ 0101 = 0001\ 1011\ 0101$

 $1101001011101_2 = 1A5D_{16}$

Summary: base conversion methods

Representing Numbers

Positional representation

- Decimal (base 10)
- Binary (base 2)
- Octal (base 8)
- Hexadecimal (base 16)
- Conversion between different bases
 - Binary, hex, oct to decimal (recap)
 - Binary to/from hex and octal
 - Decimal to binary, hex, octal

Signed binary representation – 2's complement

- 2's complement (binary) to decimal
- Decimal to 2's complement (binary)

Binary representation of fractions

- Binary to decimal
- Decimal to binary

How to extract the Least Significant Digit

$$(d_{n-1}d_{n-2}\cdots d_1 d_0)_b$$

$$= d_{n-1} * b^{n-1} + d_{n-2} * b^{n-2} + \dots + d_1 * b^1 + d_0 * b^0$$

$$= (d_{n-1} * b^{n-2} + d_{n-2} * b^{n-3} + \dots + d_1 * b^0) * b + d_0$$

$$= (d_{n-1}d_{n-2}\cdots d_1)_b * b + d_0$$
One less digit
Example: (402213)_5 = (40221)_5 × 5 + 3
Example: (402213)_{10} = (40221)_{10} × 10 + 3
Example: (40221)_{10} = (4022)_{10} × 10 + 1

Divide base, remainder gives the right most digit.(quotient)Divide base, remainder gives the 2nd right most digit.EECS1520: Representing Numb (new quotient)Divide base, remainder gives the 3rd right most digit.

Converting Decimal to Other Bases

Divide base, remainder gives the right most digit. Divide base, remainder gives the 2nd right most digit. Divide base, remainder gives the 3rd right most digit.

Algorithm for converting number in base 10 to other bases (e.g., base b)

While (the quotient is not zero)

Divide the decimal number by the new base b. Make the remainder the next digit to the left in the answer.

Replace the original decimal number with the quotient.

 $(d_{n-1}d_{n-2}\cdots d_1 d_0)_b$

(divide by b)

$$= \underbrace{(d_{n-1}d_{n-2}\cdots d_1)_b}_{Ouotient} \times b + \underbrace{d_0}_{Remainder}$$

EECS1520: Representing Numbers

121

Converting Decimal to Binary

What is 9 (base 10) in binary (base 2)?

What is 37 (base 10) in binary (base 2)?

$(9)_{10} = (1 \ 0 \ 0 \ 1)_2$

EECS1520: Representing Numbers

Let's check by converting back¹²³

Let's check by converting back¹²⁴

Converting Decimal to Octal

What is 43 (base 10) in base 8? Try it!

What is 1988 (base 10) in base 8? Try it!

EECS1520: Representing Numbers

Let's check by converting back¹²⁶

Converting Decimal to Hexadecimal

What is 43 (base 10) in base 16? Try it!

What is 1988 (base 10) in base 16? Try it!

What is 3567 (base 10) in base 16? Try it!

$$(43)_{10} = (2B)_{16}$$

EECS1520: Representing Numbers

Let's check by converting back¹²⁹

$$(1988)_{10} = (7C4)_{16}$$

EECS1520: Representing Numbers

Let's check online

$$(3567)_{10} = (DEF)_{16}$$

Did earlier other way Exercise for you Let's check online ¹³¹

EECS1520: Representing Numbers

Summary: base conversion methods

Summary: base conversion methods

Extra: Oct <-> Hex

Representing Numbers

Positional representation

- Decimal (base 10)
- Binary (base 2)
- Octal (base 8)
- Hexadecimal (base 16)
- Conversion between different bases
 - Binary, hex, oct to decimal (recap)
 - Binary to/from hex and octal
 - Decimal to binary, hex, octal

Signed binary representation – 2's complement

- 2's complement (binary) to decimal
- Decimal to 2's complement (binary)

Binary representation of fractions

- Binary to decimal
- Decimal to binary

• So far, assume all bits are values. For n bits/poles, how many different values? Max and min value?

• 3 bits/poles?

- So far, assume all bits are values. For n bits/poles, how many different values? Max and min value?
- 000 • 3 bits/poles 001 010 011 100101110111 • 7 bits/poles? total min max • 8 bits/poles? 8 0 7

• 32 bits/poles?

 So far, assume all bits are values. For n bits/poles, how many different values? Max and min value?

min

max

• 7 bits/poles 2⁷ = 128 values. 0000000 1111111 0~127

• 8 bits/poles 2⁸ = 256 values. 0000000 11111111 0~255

- 32 bits/poles 2³² = 4,294,967,296 values. 000...0 111...1 0~4,294,967,295
- n bits/poles 2^n values. $0 \sim 2^n 1$

total

How To Create a Negative Number

In digital electronics you cannot simply put a minus sign in front of a number to make it negative.

You must represent a negative number in a *fixed-length* binary number system. All signed arithmetic must be performed in a *fixed-length* number system.

A physical *fixed-length* device (usually memory) contains a fixed number of bits (usually 4-bits, 8-bits, 16-bits) to hold the number.

Integers: Ordinary Signed Representation

Leftmost bit represents sign (0 = "+", 1 = "-").
 The remaining bits represent an ordinary binary number.

- 0 has two different representations.
- How to eliminate this wasted redundancy and ambiguity?

Integers: Ordinary Signed Representation

 Let's find -7 and -12 using Ordinary Signed Representation in an 8-bit binary system

Integers: Ordinary Signed Representation

 Now let's add +7 and -7 using Ordinary Signed Representation in an 8-bit binary system

- This method is not accurate if we need to perform operations such as addition or subtraction
- O has two different representations

How to eliminate this wasted redundancy, inaccuracy and ambiguity?

2's Complement Notation

- 2's complement is one possible solution.
- The leftmost bit represents not only sign, but **negative** positional value.

2's Complement Notation

• 3 bits/poles 2^3 values. $0 \sim 2^3 - 1$ • 3 bits --2's complement 2^3 values. $-2^{3-1} \sim 2^{3-1} - 1_{145}$

Signed vs. unsigned, summary

Assume all n bits are magnitudes.

- Max value: 1111111....11111
- Min value: 0000000....00000
- How many values: 2ⁿ
- Range: 0~2ⁿ-1

Assume 2's complement.

- Max value: 0111111....11111
- Min value: 100000....00000

 $-2^{n-1} \sim 0 \sim 2^{n-1}-1$

half

half

- How many values: 2ⁿ
- Range: EECS1520: Representing Numbers

3 bits, 2's complement, max and min value?

2's Complement (binary) → Decimal

- If MSB is 0 \rightarrow decimal value is positive
 - Convert from binary to decimal as normal $0110 \rightarrow$
- If MSB is 1 \rightarrow decimal value is negative 1101 \rightarrow
 - Negative value definition (approach 1)
 - Take the remaining (or all) bits
 - Flip the bits (i.e., $0 \rightarrow 1, 1 \rightarrow 0$)
 - Add 1
 - Convert from binary to decimal as normal, remember the sign

(approach 2)

- For example (assume 4 bits):
 - 0110 \rightarrow 6
 - 1101 \rightarrow -((0010) +1) \rightarrow -(0011) \rightarrow -3
 - 1001 →
 - 11100110 →

Be given the # of bits

Decimal \rightarrow 2's Complement (binary)

- If decimal is positive, convert to binary (26, how?)
- If decimal is negative
 - Convert absolute value to binary (26, how?)
 - Flip the bits (i.e., $0 \rightarrow 1, 1 \rightarrow 0$)
 - Add 1
 - Set the MSB to be 1
- For example:
 - 6 \rightarrow 0110 assume 4 bits
 - $-6 \rightarrow (6 \rightarrow 0110) \rightarrow 1001 + 1 \rightarrow 1010$ assume 4 bits
 - -3 (3→0011) → 1101
 - -7 (7→0111) → 1001
 - -17 assume 8 bits (17→00010001) 11101111
 - -26 assume 8 bits (26→ 00011010) 11100110
 - -37 assume 8 bits (37→00100101) 11011011

unsigned

signed

the # of bits

Be given

1010?

Not 10

assume 4 bits

2's Complement Examples assume 8 bits

Example #1 -5?

Interpretations of Binary Patterns

4 bits, max min? unsi		unsigned	signed	
	Binary	Decimal (All values)	Hexadecimal	2's Complement (left most is sign)
	1111	15	F	-1
	1110	14	E	-2
	1101	13	D	-3
	1100	12	С	-4
	1011	11	В	-5
	1010	10	A	-6
	1001	9	9	-7
	1000	8	8	-8
	0111	7	7	7
	0110	6	6	6
	0101	5	5	5
	0100	4	4	4
	0011	3	3	3
	0010	2	2	2
	0001	1	1	1
EECS1520	0000	0	0	0

Arithmetic in 2's Complement (remember it's a *fixed length* system)

00 + 00 = 0000 + 01 = 0101 + 00 = 0101 + 01 = 10

EECS1520: Representing Numbers

 10 + -3 (11101)
 -5 (111011)
 + 2
 -127 (10...1)
 +1

 29 (00011101)
 23 (0010111)
 23-29
 23-29

Arithmetic in 2's Complement (remember it's a *fixed length* system)

00 + 00 = 0000 + 01 = 0101 + 00 = 0101 + 01 = 10

EECS1520: Representing Numbers

 10 + -3 (11101)
 -5 (111011)
 + 2
 -127 (10...1)
 +1

 29 (00011101)
 - 23 (0010111)
 23-29
 23-29

Arithmetic in 2's Complement (remember it's a *fixed length* system)

00 + 00 = 0000 + 01 = 0101 + 00 = 0101 + 01 = 10

EECS1520: Representing Numbers

 10 + -3 (11101)
 -5 (111011)
 + 2
 -127 (10...1)
 +1

 29 (00011101)
 - 23 (0010111)
 23-29
 23-29

$POS + NEG \rightarrow POS Answer$

Take the 2's complement of the negative number and use regular binary addition.

$POS + NEG \rightarrow NEG$ Answer

Take the 2's complement of the negative number and use regular binary addition.

$NEG + NEG \rightarrow NEG$ Answer

Take the 2's complement of both negative numbers and use regular binary addition.

$POS + NEG \rightarrow POS Answer$

Take the 2's complement of the negative number and use regular binary addition.

Number Overflow

If each value is stored using 8 bits, then 126 + 3 overflows:

Max value? -128 ~ 127

01111110 + 00000011 10000001

Apparently, 126 + 3 is -127. This overflow error is the result of trying to represent an infinite range in a finite one

Even present-day 64-bit computers cannot operate with all integers because only finitely many of them can be represented as 64-bit binary numbers

Representing Numbers

Positional representation

- Decimal (base 10)
- Binary (base 2)
- Octal (base 8)
- Hexadecimal (base 16)
- Conversion between different bases
 - Binary, hex, oct to decimal (recap)
 - Binary to/from hex and octal
 - Decimal to binary, hex, octal

Signed binary representation – 2's complement

- 2's complement (binary) to decimal
- Decimal to 2's complement (binary)

Binary representation of fractions

- Binary to decimal
- Decimal to binary

Positional Notation extended to fractions

Its value = $d_{n-1} \times b^{n-1} + d_{n-2} \times b^{n-2} + \dots + d_1 \times b^1 + d_0 \times b^0$ $+ d_{-1} \times b^{-1} + d_{-2} \times b^{-2} \times d_{-3} \times b^{-3} \dots$

Examples:

 $(64.27)_{10} = 6 \times 10^{1} + 4 \times 10^{0} + 2 \times 10^{-1} + 7 \times 10^{-2} = 64.27$ $(50.73)_{8} = 5 \times 8^{1} + 0 \times 8^{0} + 7 \times 8^{-1} + 3 \times 8^{-2} = 40.921875$ $(10.11)_{2} = 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} = 2.75$ $(10.11)_{2} = 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} = 2.75$ $(10.12)_{2} = 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} = 2.75$ $(10.12)_{2} = 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} = 2.75$ $(10.12)_{2} = 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} = 2.75$ $(10.12)_{2} = 1 \times 2^{1} + 0 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} = 2.75$

Note:

Integer/whole part: $(1 \ 0)_2 = 2$ Fractional part: $(. 1 \ 1)_2 = .75$

These can each be converted separately. $(1 \ 0 \ 0 \ 1 \ . \ 0 \ 1 \)_2 = 9.25$ $(1 \ 0 \ 1 \ 0 \ . \ 1 \ 1 \ 1)_2 = 10.875$ EECS1520: $(1 \ 0 \ 1 \ 1 \ . \ 1 \ 0 \ 1)_2 = 11.625$ Fractions: Binary Decimal Example 1:

 $(2.75)_{10} = (?)_2$

 $(2)_{10} = (10)_2$

$$(.75)_{10} = (.11)_2$$

.75*2 = 1.5
5*2 = 1.0

[repeated <u>division</u> by 2, described earlier]

[repeated multiplication by 2, described next]

[extract integer part: 0/1, repeat on fraction]

[stop when fraction becomes 0, or you run out of available bit positions]

 $(2.75)_{10} = (10.11)_2$

Fractions: Decimal to Binary

Example 2: $(37.25)_{10} = (??.?)_2$

37.75 10.875 11.625

Fractions: Decimal to Binary

Example 3: $(.3285)_{10} = (.?????)_2$

Scientific Notation

- Very large and very small numbers are often represented such that their order of magnitude can be compared.
 - - In scientific notation, this is written $9.1093826 \times 10^{-31}$ kg.
 - E.g., Earth's mass is about
 5,973,600,000,000,000,000,000,000 kg.
 - In scientific notation, this is written 5.9736 × 10²⁴ kg.
- In general, any number can be expressed as follows:

 $a \times b^e$

where e is an integer, and a is a real number, and b is a natural number > 1

EECS1520: Representing Numbers

0.00137 1.37×10^{-3} 15237 1.5237×10^{4} 59000005 5.9000005×10^{7} 123.025 1.23025×10^{2} 0.00005025 5.025×10^{-5}

Representing Real Numbers in Decimal

For your information

A real value in base 10 can be defined by the following formula where the exponent is an integer

 $sign \times mantissa \times 10^{exponent}$

This representation is called **floating point** because the radix point "floats" left or right, depending on the value of *exponent*

Representing floating point in computers is considered beyond this course. If you are interested, search IEEE 754 in the internet

In a 64-bit floating point number, only 53 bits are used for mantissa Lower precision if you use f.p. numbers when integer ones could also work

The idea of these slides was to show you that all different types of numbers can be represented in computers by using only 0 and 1

yet in some cases not as accurate as they are in real world

EECS1520: Representing Numbers

How many bits is enough?

- Recording Earth coordinates with 1 cm precision
 - log₂(40 000 000 m *100 cm/m) ~ 32 bits per coordinate

- Jeff Bezos' wealth (2019) with \$0.01 precision
 - log₂(\$112.4 billion * 100) ~ 44 bits
- Human mass with 100 g precision
 - log₂(635 * 10) ~ 13 bits
 - 635 kg was the highest mass of a person ever, according to Google
- Outside air temperature with 0.1 degree precision
 - log₂(10*(58–(-88)) ~ 11 bits
- Generally, you need log₂10 (~3.32) binary digits for every decimal one

12.6325408765

43.3537072691

log2(635 * 10) =

log2(112.4 billion * 100) =

Representing Numbers

Representing Texts

Representing Audio

Representing Images and graphics

Representing Videos

Representing Numbers

Positional representation

- Decimal (base 10)
- Binary (base 2)
- Octal (base 8)
- Hexadecimal (base 16)
- Conversion between different bases
 - Binary, hex, oct to decimal
 - Binary to/from hex and octal (special relations)
 - Decimal to binary, hex, octal

Signed binary representation – 2's complement

- 2's complement (binary) to decimal
- Decimal to 2's complement (binary)

Binary representation of fractions

- Binary to decimal
- Decimal to binary

Binary, Oct and Hex \rightarrow Decimal

Give the Decimal equivalent of the following

• Binary 00111010 , = ($)_{10}$ = ($)_{10}$ Octal 137 ₈ • Hex $13C_{16}$ = ($)_{10}$ 132 4 = ()10 122 3 = ()₁₀

Binary \rightarrow Oct and Hex

Given binary representation 00111010_2 , how to represent it in Oct and Hex?

- Octal ()₈
- Hex ()₁₆ • ()₄

Oct and Hex \rightarrow Binary

Given Oct representation 73_8 , what is the binary representation? 00111011

- Given Hex representation 73₁₆, what is the binary representation? 01110011
- Given Hex representation 4B₁₆, what is the binary representation? 01001011

Given representation 322₄, what is the binary representation

Decimal \rightarrow Binary, Oct and Hex

Given decimal 37_{10} , how to represent it in Binary, Oct and Hex? How many base2, base8, base16 digits

- Binary
- Octal
- Hex
- Base 4
- Base 5

2's complement (binary) $\leftarrow \rightarrow$ decimal

- 0110 \rightarrow 6 assume 4 bits 2's complement
- 1001 \rightarrow -((0110) +1) \rightarrow -(0111) \rightarrow -7 assume 4 bits 2's complement
- 1101 \rightarrow -((0010) +1) \rightarrow -(0011) \rightarrow -3 assume 4 bits 2's complement
- 11100110 \rightarrow (00011001 +1) \rightarrow (00011010) \rightarrow -26 assume 8 bits

- 5 \rightarrow 0101 assume 4 bits
- $-6 \rightarrow (6 \rightarrow 0110) \rightarrow 1001 + 1 \rightarrow 1010$ assume 4 bits
- -3 (3→0011) →

assume 4 bits

- -7 (7→0111) →
- -17 assume 8 bits
- -26 assume 8 bits
- -37 assume 8 bits

• Assume 8 bits, do the following calculation in binary

3 + 4

3+1

3+5

3+7

 $10 - 3_{(1111101)}$ - 5 $_{(11111011)}$ + 2 - 127 $_{(10...1)}$ +1 29 $_{(00011101)}$ - 23 $_{(00010111)}$ 23-29

Factions $\leftarrow \rightarrow$ decimal

$$(10.111)_2 = (.?????)_{10}$$
 2.875

 $(100101.11)_2 = (.????)_{10}$ 37.75

$$(37.75)_{10} = (.??????)_2$$
 100101.11
 $(20.25)_{10} = (.??????)_2$ 10100.01
 $(20.625)_{10} = (.??????)_2$ 10100.101

Valid or not?

- (1234)₁₀
- (87120)₈
- (12AB)₁₆
- (3AB)₁₂
- (525)₅
- (1010101)₁₀

Signed vs. unsigned, summary

Assume all n bits are magnitudes.

- Max value: 1111111....11111
- Min value: 0000000....00000
- How many values: 2ⁿ
- Range: 0~2ⁿ-1

Assume 2's complement.

- Max value: 0111111....11111
- Min value: 100000....00000

 $-2^{n-1} \sim 0 \sim 2^{n-1} - 1$

- How many values: 2ⁿ
- Range: EECS1520: Representing Numbers

3 bits, 2's complement, max and min value?

Representing Numbers Representing Texts

Representing Audio

Representing Images and graphics

Representing Videos

EECS1520: Representing Numbers