Homework Assignment \#7 Due: July 14, 2023 at 10:00 p.m.

Reminder: you can use any data structure or algorithm that was described in the textbook or in lectures without having to describe how it works.

1. You are given a collection S of n line segments on the plane \mathbb{R}^{2}. For each segment, one endpoint lies on the line $y=0$ and the other lies on the line $y=1$. A segment from $(a, 0)$ to $(b, 1)$ can be described by a pair of numbers, a and b. The entire set S can be described by n such pairs, $\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)$. No two segments have a common endpoint. Assume that the segments are sorted so that $a_{1}<a_{2}<a_{3}<\cdots<a_{n}$.

You must compute how many pairs of segments intersect. Note that any number of segments might intersect in the same point.
[1] (a) State a simple condition involving $a, b, a^{\prime}, b^{\prime}$ that is true iff the segment represented by the pair (a, b) intersects the segment represented by the pair $\left(a^{\prime}, b^{\prime}\right)$.
[1] (b) Explain how you would determine which of the first $i-1$ segments intersect with the i th one.
[4] (c) Give an algorithm that solves the problem in $O(n \log n)$ time. (Give pseudocode or a description in English, not actual code.) Clearly describe any data structure(s) you use. Your algorithm should be very simple. Briefly explain why your answer to (c) is correct.

Hint: Insert the segments into a data structure one-by-one, and use part (b) after each insertion.
2. Suppose you want to store a set S of jobs. Each job has a priority and a duration. Durations are greater than 0. Assume all the jobs have distinct priorities. You want to support the following operations.

- Insert (p, d) adds a job with priority p and duration d to S. (Assume no job in S has priority p.)
- ExtractMax removes the job with highest priority from S.
- NumberJobs (D) calculates how many of the highest priority jobs can be done in time D. More precisely, it finds the number of jobs in the largest subset S^{\prime} of S such that the sum of the durations of jobs in S^{\prime} is at most D and all priorities of jobs in S^{\prime} are greater than priorities of jobs in $S-S^{\prime}$.

We want to use an augmented red-black tree to implement this abstract data type so that every operation runs in $O(\log n)$ time when $|S|=n$.
[1] (a) What would you use as the key for ordering the red-black tree?
[2] (b) What additional field(s) would you add to each node of the red-black tree?
[2] (c) How can you compute the value of your new field(s) of a node x in constant time using information in x and its children?
[2] (d) Briefly describe how to do an Insert and ExtractMax.
[3] (e) Describe how to do a NumberJobs query. First give an intuitive description, and then give pseudocode.

