York University

EECS 4101

Homework Assignment #6 Due: July 7 at 10:00 p.m.

- 1. The textbook has two routines that fix a single violation of the red-black tree properties introduced by insertions and deletions in a red-black tree (RBT):
 - RB-INSERT-FIXUP(T, z) fixes a tree T where z and its parent are both red, and
 - RB-DELETE-FIXUP(T, x) fixes a tree T that has double-black node x.

Suppose we have two RBTs T_1 and T_2 and a key k such that every key in T_1 is less than k and every key in T_2 is greater than k. We wish to design a JOIN operation that constructs a new RBT T' that contains k and all the keys in T_1 and T_2 .

Assume that each node in our RBTs has an additional field that stores the black height of that node. (We shall see in class soon how this field can be kept up-to-date without affecting the running time of operations.)

- [2] (a) Describe how to do $JOIN(T_1, k, T_2)$ if the roots of T_1 and T_2 have the same black height.
- [4] (b) Suppose T_1 's root has smaller black height than T_2 's root. Then $JOIN(T_1, k, T_2)$ will modify T_2 to build T'. The JOIN replaces a node v in T_2 with a new node v' whose left child is the root of T_1 and whose right child is v. How would you choose v? What would the key and colour of v' be so that this change introduces at most one violation of RBT properties?
- [2] (c) Describe the violation that could be introduced in part (b). How would you fix it?
- [2] (d) State the worst-case running time of JOIN if T_1 has height h_1 and T_2 has height h_2 . Briefly justify your answer.