Homework Assignment \#5 Due: June 28, 2023 at 10:00 p.m.

[4] 1. Prove or disprove the following statement. At any time, the node with the maximum degree in a Fibonacci heap is one of the roots.
2. A treap is a binary tree that stores a pair (k, p) in each node so that the k values satisfy the binary search tree property and the p values satisfy the min-heap-ordering property. We shall call the k values keys and the p values priorities.
[3] (a) Draw a treap containing the pairs $(4,2),(7,8),(2,9),(5,1),(1,6),(9,4)$.
[3] (b) Explain why there is a unique treap that contains the pairs $\left(k_{1}, p_{1}\right), \ldots,\left(k_{n}, p_{n}\right)$ if the priority values are all distinct.
[2] (c) Suppose we want to build a binary search tree containing keys $k_{1}, k_{2}, \ldots, k_{n}$. We choose priorities $p_{1}, p_{2}, \ldots, p_{n}$ uniformly at random from a very large range (so that the probability of any two priorities being the same is negligible). If you sorted the (k_{i}, p_{i}) pairs according to their priorities and then inserted the keys into a normal binary search tree in this order, explain why you would get a tree of exactly the same shape as the treap built from the pairs $\left(k_{1}, p_{1}\right), \ldots,\left(k_{n}, p_{n}\right)$.
[2] (d) Explain why the treap built using random priority values as described in part (c) has expected height $O(\log n)$.

Remark: you can build a treap by inserting elements one-by-one so that the time for each insertion is proportional to the height of the tree, as follows.
function Treap-Insert (T, k, p)
create a new node z and set $z . k e y \leftarrow k$ and z.priority $\leftarrow p$
$\operatorname{Tree-Insert}(T, z)$
while z.parent \neq nil and z.priority $>$ z.parent.priority do
if z is the left child of its parent then Right-Rotate(T, z.parent)
else Left-Rotate(T, z.parent)
end if
end while
end function
The Tree-Insert on line 3 is the standard BST insertion algorithm to insert the node z into T. The calls to the Right-Rotate and Left-Rotate routines (which are described in Section 13.2 of the textbook) perform rotations that move z up to its parent's position.

