York University EECS 4101 June 9, 2023

Homework Assignment #4
Due: June 16, 2023 at 10:00 p.m.

. We discussed in class (and it is given in detail in the textbook) to perform a UNION on two binomial heaps.
It merges the two root lists and then makes a pass through the merged list to link up pairs of roots of the
same degree. This is a little wasteful when the two heaps are of very different sizes; in some cases we could
stop the second pass early if we can determine that no further more roots need to be linked.

Here is a different, optimized implementation of the UNION operation that does stop early. It just makes
a single pass to merge the root lists and simultaneously links pairs of roots of the same degree.

1: function UNION(H;, Hs)
2: x1 + head(Hy) > first root in Hy
3 xo < head(Hs) > first root in Hy
4: carry < NIL
5: H < new empty binomial heap
6 loop
7 exit when at most one of x1, s, carry is non-NIL
8 let d be the smallest degree among the roots x1, x2, carry that are non-NIL
9: if 1,22 and carry are all non-NIL and all three have degree d then
10: append carry to the end of H’s root list
11: let carry be the root x; or xs with smallest priority and other be the other one
12: T1 < x1.next > advance to next root of Hy
13: To < To.next > advance to next root of Hy
14: carry.next < NIL > detach roots carry and other from root lists of Hy, Ho
15: other.next < NIL
16: make other the first child of carry
17: else if two of x1,zo, carry are non-NIL and have degree d then
18: let carry be the one of these two with smallest priority and other be the other one
19: if x1 = carry or x1 = other then x; + xi.next> advance to next root of Hy
20: end if
21: if xo = carry or xo = other then x5 < xo.next > advance to next root of Hy
22: end if
23: carry.next < NIL > detach roots carry and other from root lists of Hy, Ho
24: other.next + NIL
25: make other the first child of carry
26: else > all of the non-NIL nodes among x1, x2, carry have different degrees
27: let next be the root among 1, x2, carry that has degree d
28: if next = z; then
29: r1 < x1.next > advance to next root of Hq
30: next.next < NIL > detach next from H;’s root list
31: else if next = x5 then
32: To < To.next > advance to next root of Hy
33: next.next < NIL > detach next from Hs’s root list
34: end if
35: append next to H’s root list
36: carry < NIL
37: end if
38: end loop
39: if one of x1, xo, carry is non-NIL then
40: append that root to the end of H’s root list
41: end if
42: return H

43: end function

1 OVER. ..



3]

(1]

2l

(1]
(4]

EECS 4101 Assignment 4 June 9, 2023

If the two heaps have sizes n; and no the UNION of the heaps is done analogously to doing binary addition
of n; and ny. In particular, the root stored in carry behaves like the carry bit in the binary addition.

If 1 is non-nil when the loop exits, line 40 appends the rest of H;’s root list to the end of H’s root list.
Similarly, if x5 is non-nil when the loop exits, line 40 appends the rest of Hy’s root list to H’s root list. This
saves some time because the algorithm does not have to traverse the rest of those lists.

(a)

(b)

(c)

(d)
(e)

Suppose H; is a binomial heap containing 365 items and Hs is a binomial heap containing 14 items.
If we do a UNION(Hy, Hs), the state of the data structure at the start of the first iteration of the loop
is shown below. We only show roots of the binomial trees, and each root is labelled with a name and
the node’s degree.

x1

) e ) e G e ) e O ) et
T2

H HNIL carry = NIL

H empty

Draw similar diagrams showing showing these 9 nodes after each iteration of the loop. Indicate which
roots the pointers x1, 2 and carry point to at the end of each iteration. Then, draw a similar diagram
showing the heap H that is returned by the UNION.

How does each iteration of the loop in UNION where the test on either line 9 or 17 is true change the
total number of tree roots?

Consider a UNION on two heaps containing n; and ny items. Show that there are at most 1 +
[log(min(ny,ng))] iterations of the loop where the tests on line 9 and 17 are both false.

Show that logy(n1 + ng) < 1+ logy(max(ny,ns)).

As discussed in class, an INSERT(z) into H; can be performed by creating a heap Hs containing a single
node and then performing a UNION(H;, Hz). A MAKEHEAP operation creates a new empty heap.
Consider a sequence of operations that consists only of MAKEHEAP, INSERT and UNION operations.
Assume that initially there are no heaps. Do an amortized analysis of this sequence.

Hint: as mentioned in class, the INSERTS can be analyzed by storing one unit of potential (or one
dollar, if you prefer the accounting method) for each root of each heap. To handle UNION operations,
add log n units of potential (or dollars) for each heap containing n > 0 elements and use parts (b)-(d).



