
York University EECS 4101 May 30, 2023

Homework Assignment #3
Due: June 9, 2023 at 10:00 p.m.

1. This question is a continuation of Assignment 2, in which we shall add support for deletions. Suppose we
want to implement an ADT for a set of integers that supports the operations

• Insert(x), which adds x to the set (assuming, as a precondition, that x is not already in the set),

• Delete(x), which removes the item x from the set (assume that the argument actually indicates the
location of x in the data structure), and

• Search(x), which returns true if x is in the set and false otherwise.

Let n be the number of elements in the set. Once again, we store the elements in a linked list of arrays.
Each element of the set appears in exactly one of the arrays. Each array is sorted in increasing order, but
there is no constraint on how the elements of one array compare to the elements of another array. Each array
has size 2k for some non-negative integer k and no two arrays in the list have the same size. The arrays are
ordered in the list by their size (in increasing order).

Various approaches could be used to delete elements. We shall use a simple technique of marking elements
as deleted. Each array entry has an associated bit, where 0 indicates the item in the array entry is present
in the set and 1 indicates that the item is marked as deleted (and is no longer in the set).

1: function Search(x)
2: for each array A in the list of arrays do
3: if x is found by a binary search of A and the entry is not marked as deleted then return true
4: end if
5: end for
6: return false
7: end function

8: function Insert(x)
9: precondition: x is not already in the set

10: create an array of size 1 containing x and insert it at the beginning of the list
11: current← first element in the list
12: done← false
13: loop
14: exit when done or current.next is null . we reached end of list or did line 20
15: if current and current.next are arrays of the same size then
16: merge arrays current and current.next into a new array new
17: replace current and current.next in the list by new
18: current← new . advance to new array for next iteration
19: else
20: done← true
21: end if
22: end loop
23: n← n + 1
24: space← space + 1
25: end function

26: function Delete(A, i)
27: precondition: A is an array in the linked list of arrays and A[i] is an unmarked element of A
28: set the mark bit of A[i] to 1
29: n← n− 1
30: if then Rebuild
31: end if
32: end function

1 over. . .



EECS 4101 Assignment 3 May 30, 2023

We have added two variables: n stores the number of elements currently in the set and space stores the
total size of all the arrays used to represent the set. They are updated on lines 23, 24 and 29.

Remark: We maintain an invariant that if several copies of an element appear in an array, then only the
leftmost one can be unmarked. This is maintained during merges: if the merge on line 16 compares two
entries that have identical values and one is unmarked, it copies the unmarked entry into the merged array
first. Thus, the binary search on line 3 should look for the leftmost copy of x.

(a)[1] Suppose the test on line 30 always evaluates to false. What problem(s) do you see with the performance
of the data structure (in terms of time and/or space)?

(b)[3] We would like to improve the performance of the data structure by periodically rebuilding it using
the Rebuild routine. The goal of this rebuild will be to discard all of the elements that are marked
as deleted. Describe how you would implement the Rebuild function efficiently. Use Θ notation to
describe the running time of your Rebuild in terms of n and/or space.

(c)[2] A Rebuild may be fairly expensive, so we do not want to do it too often. However, doing it too
infrequently might not solve the problems you identified in part (a). Give a condition for line 30 that
will ensure the amortized time per Delete is reasonable, while ensuring that the amortized time per
Insert is still O(log n) and that every Search still takes O(log2 n) time.

(d)[2] Use Θ notation to give a good bound on the amount of space used as a function of n. Briefly justify
your answer.

(e)[5] Consider a sequence of m operations (including insertions, deletions and searches). Let nmax be
the maximum value of n at any time during the sequence. Do an amortized analysis of the new data
structure, giving a good bound on the amortized time per Delete while still maintaining an amortized
time per Insert of O(log nmax).

You can use the accounting method or the potential method.

If you use the potential method, you can define the value of the potential to be

Φ =
∑̀
i=1

2ki(log2 nmax − ki) +

when the list contains arrays of sizes 2k1 , 2k2 , . . . , 2k` . (You have to figure out how to replace the blank
to get a good bound for Delete operations; if you do so correctly, most of the analysis of Insert
operations will be very similar to Assignment 2, but you must also consider how Insert operations
affect the value you write in the blank. The value you choose for the blank will also have to be useful
for offsetting the expensive Rebuild operations.)

If you use the accounting method, you should clearly state your credit invariant, and prove it carefully.

Hint: It might be helpful to use the fact that, immediately after a rebuild,
∑̀
i=1

2ki(log2 nmax − ki) ≤

n log nmax.

2


