
York University EECS 4101 August 4, 2023

Homework Assignment #10
Due: August 14, 2023 at 10:00 p.m.

1.[4] You are given a collection of n data points (x1, y1, z1), . . . , (xn, yn, zn) in a 3-dimensional space and you wish
to cluster them. That is, you want to divide the points up into disjoint clusters as follows. Two points must
be put in the same cluster if the distance between them is less than or equal to T . You want as many clusters
as possible, subject to the preceding rule.

Give an algorithm that performs this clustering. Give upper bounds on the time and space required by
your algorithm.

2. Suppose we use trees to implement the union-find ADT. We use path compression. But instead of using
union by rank, we use union by size: each root has a size field that stores the size of tree rooted at that
node, and when a Union operation connects two roots, the one with the smaller size is made the child of
the other. (Ties can be broken arbitrarily.)

Once a node becomes a child of another node, we do not bother to update its size field ever again because
(a) we never use the size field of that node ever again, and (b) it would be too hard to figure out how the
size of the node’s subtree changes when we do path compression.

(a)[2] Show that the worst-case time for an individual FindSet or Union operation is O(log n), where n is
the number of nodes in the data structure.

(b)[5] We want to argue that the amortized O(log∗ n) time bound shown in class still holds if we do path
compression and union by size. Consider a sequence of m MakeSet, FindSet and Union operations,
starting from an empty data structure. Let n be the number of MakeSet operations in the sequence.

Define the grade of a node v to be the base-2 logarithm of the value that v.size has at the end of the
entire sequence of operations. (The algorithm does not compute the grade of any node; the grade of
the node is just something we define for the sake of doing our analysis.) Explain why the grades of
nodes satisfy the same properties as the ranks would satisfy (if we were doing union by rank), namely:

(i) If a node v is the child of a node u at any time, then v.grade ≤ u.grade− 1.

(ii) If path compression changes a node v’s parent from node u to node u′, then u.grade ≤ u′.grade−1.

(iii) For all natural numbers r, at most n
2r nodes have grades in the interval [r, r + 1).

These properties have been reworded slightly because grades might not be integers, whereas ranks
always are integers.

Hence, if we divide nodes into blocks according to the value of log∗(grade), and divide up the steps of
each path traversal during a FindSet or Union into block steps and ordinary steps (as described in
class), the proof we did in class would then show that the total time for the sequence of m operations
is O(m log∗ n). (Think through the proof to doublecheck this, but you don’t have to write anything
down about this.)

1


