Homework Assignment \#8
 Due: December 2, 2022 at 11:59 p.m.

[3] 1. Consider the following algorithm to check whether there are any duplicates in an unsorted array A of n elements, each drawn from the universe $\{1,2, \ldots, N\}$. Assume p is a prime number with $p>N$. The algorithm uses chaining on a hash table of size n.

```
choose a random \(a \in\{1, \ldots, p-1\}\) and \(b \in\{0, \ldots, p-1\}\)
let \(h\) be the hash function defined by \(h(x)=((a x+b) \bmod p) \bmod n\)
let \(B[0 . . n-1]\) be an array of linked lists; initially all lists are empty
for \(j \leftarrow 0 . . n-1\)
    iterate across the linked list \(B[h(A[j])]\) looking for the element \(A[j]\)
    if found, stop and return "Duplicate found"
    else append \(A[j]\) to the list \(B[h(A[j])]\)
    end if
end for
return "No duplicates found."
```

What is the expected running time of this algorithm? Express your answer using big-O notation, and justify your answer. Your bound should hold for every possible input array A.
[4] 2. Consider directed graphs on n nodes, labelled $1,2,3, \ldots, n$. Such a graph is called sparse if the number of edges is much smaller than n^{2}. Such a graph can be compactly represented as an (unsorted) list of its edges. Each element in this list is a pair (i, j), indicating that there is an edge from node i to node j.

Given the list representation of two directed graphs on n nodes, each containing at most m edges, give a randomized algorithm to determine whether the first is a subgraph of the second. The expected running time of your algorithm should be $O(m)$, and the amount of space used should be $O(m)$ in the worst case.

You may assume that you are given a prime number $p \geq n^{2}$.

