Homework Assignment \#6 Due: November 11, 2022 at 11:59 p.m.

1. Suppose you have a set S of n elements (k, p), each of which has a key k and a priority p. The priorities of elements in S are distinct. The keys of elements in S are distinct. The keys are drawn from an ordered domain D.

We are interested in building a binary tree containing the n elements satisfying the following properties.

- The keys satisfy the binary search tree property (i.e., for every node x the keys in the left subtree of x are less than x 's key and the keys in the right subtree of x are greater than x 's key).
- The priorities satisfy the heap-ordering property (i.e., for every node x other than the root, x 's priority is less than x 's parent's priority).
[4] (a) Draw a tree containing the following key-priority pairs: $(1,7),(3,4),(5,2),(7,10),(10,5),(12,6),(14,1)$.
[3] (b) Claim: For any S, there is exactly one tree having the two properties described above. Explain why this claim is true.
[6] (c) Suppose you have a tree T that satisfies the properties described above. Consider the following algorithm to insert a new pair (k, p) into the tree.

```
\(\operatorname{Insert}(T, k, p)\)
    create a new node \(z\) and set \(z . k e y \leftarrow k\) and \(z\).priority \(\leftarrow p\)
    \(\operatorname{Tree-Insert}(T, z)\)
    while (z.parent \(\neq\) nil and \(z\). priority \(>\) z.parent.priority \()\)
        if \(z\) is the left child of its parent then Right-Rotate(T, z.parent)
        else Left-Rotate( \(T, z\).parent)
        end if
    end while
end Insert
```

The Tree-Insert on line 3 is the standard BST insertion algorithm to insert the node z into T (see page 321 of the textbook). The calls to the Right-Rotate and Left-Rotate routines (which are described on page 336 of the textbook) perform rotations that move z up to its parent's position.
(i) Prove that at the beginning of each iteration of the loop, the only possible violation of the tree properties is that z might have a greater priority than its parent.
(ii) Explain why the loop terminates and show that when it terminates, the tree satisfies the required tree properties.
[3] (d) Suppose that you insert distinct keys $k_{1}, k_{2}, \ldots, k_{n}$ in that order, one-by-one into an initially empty tree. For each key, you choose a random priority. Assume the random choices are independent and uniform from a large enough range that the probability of choosing the same priority for two keys is negligible. (In other words, pretend the probability of choosing equal priorities is 0 .) Give a good upper bound on the expected height of the resulting tree.

