Homework Assignment \#1

Due: September 21, 2022 at 5:00 p.m.
Before working on this assignment, you should complete and submit (via eclass) the declaration posted on the course web page. Your solutions should also be submitted via eclass.

1. Consider a binary search tree T that contains the integer keys $1, \ldots, n$. We shall measure the time to perform a Search by counting the number of nodes of T the Search must visit before outputting an answer. Let $W_{\text {search }}(T)$ be the worst-case time to search for any key in T :

$$
W_{\text {search }}(T)=\max _{1 \leq k \leq n}(\text { number of nodes visited by } \operatorname{SEARCH}(k) \text { in } T)
$$

Let $A_{\text {search }}(T)$ be the average time to search for a key (chosen uniformly at random) in T :

$$
A_{\text {search }}(T)=\frac{1}{n} \sum_{k=1}^{n}(\text { number of nodes visited by } \operatorname{SEARCH}(k) \text { in } T)
$$

Prove or disprove the following statement.
There is a constant c such that, for all n and for all binary search trees T containing keys $1, \ldots, n$, if $A_{\text {search }}(T) \leq 2 \log _{2} n$ then $W_{\text {search }}(T) \leq c \log _{2} n$.
2. Consider the implementation of the counter that we described in class: the value is stored in binary representation in a linked list of bits. The list is accessed by a pointer to the least significant bit. Now suppose the counter supports two additional operations Double that multiplies the value of the counter by 2 and Halve that divides the value by 2 (rounding up).
(a) Briefly describe how you would implement the Double and Halve operations.
(b) Use Θ notation to give a tight upper bound on the worst-case time required for a sequence of m Increment, Double and Halve operations, if the counter initially has the value 0 . Prove your answer is correct (using any method you like).
3. Now consider a version of the counter that supports three operations: Double, which multiplies the value by 2 , Increment, which increases the value by 1 , and Decrement, which decreases the value by 1 . (If the value is 0 , Decrement should have no effect.)
(a) Briefly describe how you would implement DECREMENT, including how you would handle the case when the value is 0 .
(b) Use Θ notation to give a tight upper bound on the worst-case time required for a sequence of m Increment, Decrement and Double operations, if the counter initially has the value 0 . Prove your answer is correct (using any method you like).

