

Software Tools

C, Unix (Linux), and tools

Precedence and Order of Evaluation
● Precedence has to do with associativity

– In a+b*c is executed as a+(b*c)

● Order of evaluation has to do with what is executed first
– In i<MAXARR && V[i]!=0 the first clause is evaluated first

● C has a long table of associativities
● C specifies order of evaluation for some operators only:

– && || ?: and ‘,’

Associativity

● The golden rule
– When in doubt parenthesize

● A few things to remember
– Assignment operators have very low precedence
– Unary operators have high precedence
– Arithmetic operators have generally higher

precedence than logical or relational ones

Order of Evaluation

● In most cases is not specified
– Different compilers and different architectures

behave differently
● Statement f(n++, A[n]) or n++ * A[n]

can produce different results at different times
● It is bad practice to depend on the order of

evaluation (other than for AND and OR)

Compound Statements

● Statements inside { and } form a block aka
compound statement

● Single statements end with a semicolon ;
– A semicolon turns an expression into a statement

● There is no ; needed after a right brace.
● Semicolons end statements, do not separate

them

If-else

● Typical if-else statement
● The thing to remember that since the else is

optional there is an ambiguity:

c=0;
if a<o
 if b>0
 c=a+b;
 else
 c=a-b;

Switch-case

● A multiway decision to test if an expression
matches one of the constant integer valued
labels (cases)

● The cases serve as labels to “blocks”
– The blocks do not need braces
– They are fall through
– To avoid fall through we use breaks

Fall Through

● This counts small digits and all digits

while ((c=getchar()) != EOF) {
 switch (c) {
 case ‘0’: case ‘1’: case ‘2’: case ‘3’: case ‘4’:
 Nsmall++;
 case ‘5’: case ‘6’: case ‘7’: case ‘8’: case ‘9’:
 Ndigit++;
 break;
 default:
 printf(“Not a digit: %c\n”, c);
 }
}

Loops

● For loop
● While loop
● Do while loop

while (expr1)
 Stmnt;

do
 Stmnt;
while (expr);

for (expr1; expr2; expr3)
 Stmnt;

Break and continue

● A very clean way to get out the middle of a loop
● With break we get out of the loop immediately
● With continue we go back to the beginning of

the iteration
● Break is used quite often
● Continue, not so often

Trim function

int trim(char s[])
{
 int n;

 for (n=strlen(s)-1; n>=0; n--)
 if (s[n]!=‘ ‘ && s[n]!=’\t’ && s[n]!=’\n’)
 break;
 s[n+1] = ‘\0’;
 return n;
}

Goto

● The goto statement was popular until the 70’s
● Code using gotos is easy to write, hard to write

correctly and very hard to debug.
● The fashion to abolish it was called structured

programming
● In reality it is very rarely needed if at all.

if (a[i]<0) goto errorlbl;
return sqrt(a[i]);
errorlbl: printf(“...”);
return 0;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

