

Software Tools

C, Unix (Linux), and tools

Arrays

● An easy intro to arrays
● Arrays in C are really pointers

– But do not worry about it for now.
● We see how we define fixed size arrays
● We see how we assign values to them

The wordcnt Prog.

#include <stdio.h>

int main()
{
 int c, i;
 int ndigit[10];

 for (i=0; i<10; i++) * Set all elements to zero *
 ndigit[i]=0;

 while ((c=getchar()) != EOF)
 if ('0'<=c && c<='9')
 ndigit[c-'0']++;
 printf("# of digits: ");
 for (i=0; i<10; i++)
 printf(" %d", ndigit[i]);
 printf("\n");
}

Functions

● See how we declare functions
● How we define functions
● How we return values
● How we specify the parameters (the variables

that appear in the function header)
● How we pass arguments (the values that we

give to a function when we invoke it)

The power function.

#include <stdio.h>

int power(int m, int n); /* function declaration */
 /* aka function prototype */
int main()
{
 /* */
 return 0;
}

int power(int base, int n) /* function definition */
{
 int i, p;

 for (i=1, p=1; i<=n; i++)
 p *= base;
 return p;
}

Arguments: Call by value
● In C arguments are copied to the function
● So if we provide a variable then the function gets a

copy of this variable
– This means that if the function modifies this parameter, it

modifies only the copy, not the variable itself
● A seeming exception is arrays

– Arrays in C are pointers (more on this later)
● In the modified power function in the next slide the

caller does not see the changes

The new power function.

#include <stdio.h>

int power(int m, int n); /* function declaration */
 /* aka function prototype */
int main()
{
 /* */
 return 0;
}

int power(int base, int n) /* function definition */
{
 int p;

 for (p=1; n>0; n--)
 p *= base;
 return p;
}

Arrays of Characters

● Aka strings (if NULL terminated)
● The char type is one byte long
● Such arrays are terminated by a null character
● The null character is ‘\0’ which is the same as 0.
● So a string with 5 characters is at least 6 elements

long.
● C does not know/care/check array sizes

– That’s the job of the programmer

Defining Arrays
● For now we care about arrays of constant size.

– e.g. char line[1000];

● If the array is defined inside a function the array exists while the
function is alive.
– The data in the array can be modified by that function and any function

that receives the array as argument.
● If it is defined outside any function the array exists while the

program is alive.
● In both cases at least 1000 elements are available.
● If we try to access/modify the 1001 element then bad things will

happen only if a boss/grader is nearby.

The getline function.

#include <stdio.h>

int KRgetline(char s[], int lim)
{
 int c, i;

 for (i=0; i<lim-1 && (c=getchar())!=EOF && c!='\n'; i++)
 s[i] = c;
 if (c=='\n') {
 s[i] = '\n';
 i++;
 }
 s[i] = '\0';
 return i;
}

The copy function.

#include <stdio.h>

void copy(char to[], char from[])
{
 int i;

 for (i=0; (to[i]=from[i]) != '\0'; i++);
}

External variables
● All these variables we defined were available in the

function we defined them in (unless we pass them
as arguments)

● We can also define them outside any function and
make them available to all functions as global
variables.

● Most programs need some global variables. But
– Global variables are a source of tears (hard to debug)
– Use them only if absolutely necessary

The main (function/program).

#include <stdio.h>
#define MAXLINE 1000 /* max line size */

int KRgetline(char line[], int maxline);
void copy(char to[], char from[]);

char line[MAXLINE], longest[MAXLINE];

int main()
{
 int len, max;
 /* extern char line[], longest[];*/

 max = 0;
 while (...
}

Problems to play with

● Write a function that reads from the standard
input a line at a time and prints out the characters
of the line in reverse order.

● Write a program that checks if parentheses are
balanced. The program uses a variable cnt that
it is incremented when a left parenthesis is
encountered and decremented when a right one
is encountered. The cnt should be always
positive or zero and at the EOF should be zero.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

