Software Tools

C, Unix (Linux), and tools

The If statement

e The various forms are summarized as follows:
— If list; then list; [elif list; then list;]...[else list;] fi

* Whereever list appears it means a series of
commands separated by semicolon, newline,
ampersand, pipe, etc.

e The exit status Is the status of the last
command executed or zero If no condition
tested true.

Conditions

The condition In the If or elif clauses are true If
they return zero status

Many commands like diff or cmp return a status
that Is expected.

"here Is a host of other conditions available the
most important of which is the command |

Since it iIs a command it has to be followed by
space

The [command

* The [command is terminated by |

* The simplest forms (unary) are

-X fname |,
-s fname |,
-e fname |,

-f fname |, true If fname is a regular file
' -d dname], true if dname is a directory

true if fname is executable
true is file nfmae exists and is not empty
true If file fname exists

-V varname |, true if variable varname is set
|-z string], true If string Is of zero length

The [command

* The binary operators are:
- [strl == str2], true if the strings are equal
- [strl I=str2], true if not equal
- [strl <str2], true if strl is less than str2 lexicographically.

- [huml OP num2], where OP is one of -eq, -ne, -It, -le, -gt,
or -ge, Is true If the corresponding comparison is true.

- [fnamel -nt fname?2 |, true if fnamel is newer than fname2
- [fnamel -ot fnameZ2], true if fnamel is older than fname2

* There are many more, rather esoteric ones.

The | command

* There are several logic operators, too
- [l expr], true if [expr] not true
- [(expr)], used to override precedence
- [exprl -o expr2], the OR operator
— [exprl -a expr2], the AND operator

* One can use the && or || operators like:
— [exprl -0 expr2] is equivalent to
- [exprl] || [expr2]

* Just to confuse you more the [command is almost identical
to the test command

The for command

* |t comes in two forms

— forvar[[in[word ...]];]dolist; done

- for ((exprl ; expr2; expr3)) ; do list ; done
* The first is by far the most common

- Variable var takes in each iteration the value of one the the words (or
wildcard expansion)

- |In each iteration list is executed
- The return status is the status of the last command executed

- If the in clause is ommitted the positional (command line) arguments
are used

- If there Is no word, then list is not executed.

The for command

* The second form is very similar to the C for
statement.

* The exprs are very C like
- for ((1I=1;i<10; i++)) ; do echo $i ; done

More on Quoting

* We can quote any special character with
backslash.

- This means that, for example, a dollar is a dollar not
the variable expansion operator.

* The only exception is newline. Both the
backslash and the newline disappear. Used to
break long lines without really breaking them.

More on Quoting

* We can quote all special characters in a string
with single quotes

A backslash is a backslash, is a backslash.

* Even the single gquote itself cannot be quoted

* Used to give arguments like regular
expressions that have many special characters

More on Quoting

* Double quotes allow for the dollar, back quote,
and history substitution “!!” to work.

* Tha backslash retains it special status if
followed by a dollar, a back quote, a double
guote, a backslash, an exclamation mark, or a
newline.

* Main use Is to remove special status of space
as a separator.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

