

Software Tools

C, Unix (Linux), and tools

The If statement

● The various forms are summarized as follows:
– if list; then list; [elif list; then list;]...[else list;] fi

● Whereever list appears it means a series of
commands separated by semicolon, newline,
ampersand, pipe, etc.

● The exit status is the status of the last
command executed or zero if no condition
tested true.

Conditions

● The condition in the if or elif clauses are true if
they return zero status

● Many commands like diff or cmp return a status
that is expected.

● There is a host of other conditions available the
most important of which is the command [

● Since it is a command it has to be followed by
space

The [command

● The [command is terminated by]
● The simplest forms (unary) are

– [-f fname], true if fname is a regular file
– [-d dname], true if dname is a directory
– [-x fname], true if fname is executable
– [-s fname], true is file nfmae exists and is not empty
– [-e fname], true if file fname exists
– [-v varname], true if variable varname is set
– [-z string], true if string is of zero length

The [command

● The binary operators are:
– [str1 == str2], true if the strings are equal
– [str1 != str2], true if not equal
– [str1 < str2], true if str1 is less than str2 lexicographically.
– [num1 OP num2], where OP is one of -eq, -ne, -lt, -le, -gt,

or -ge, is true if the corresponding comparison is true.
– [fname1 -nt fname2], true if fname1 is newer than fname2
– [fname1 -ot fname2], true if fname1 is older than fname2

● There are many more, rather esoteric ones.

The [command

● There are several logic operators, too
– [! expr], true if [expr] not true
– [(expr)], used to override precedence
– [expr1 -o expr2], the OR operator
– [expr1 -a expr2], the AND operator

● One can use the && or || operators like:
– [expr1 -o expr2] is equivalent to
– [expr1] || [expr2]

● Just to confuse you more the [command is almost identical
to the test command

The for command

● It comes in two forms
– for var [[in [word ...]] ;] do list ; done
– for ((expr1 ; expr2; expr3)) ; do list ; done

● The first is by far the most common
– Variable var takes in each iteration the value of one the the words (or

wildcard expansion)
– In each iteration list is executed
– The return status is the status of the last command executed
– If the in clause is ommitted the positional (command line) arguments

are used
– If there is no word, then list is not executed.

The for command

● The second form is very similar to the C for
statement.

● The exprs are very C like
– for ((i=1 ; i<10 ; i++)) ; do echo $i ; done

More on Quoting

● We can quote any special character with
backslash.
– This means that, for example, a dollar is a dollar not

the variable expansion operator.

● The only exception is newline. Both the
backslash and the newline disappear. Used to
break long lines without really breaking them.

More on Quoting

● We can quote all special characters in a string
with single quotes

● A backslash is a backslash, is a backslash.
● Even the single quote itself cannot be quoted
● Used to give arguments like regular

expressions that have many special characters

More on Quoting

● Double quotes allow for the dollar, back quote,
and history substitution “!!” to work.

● Tha backslash retains it special status if
followed by a dollar, a back quote, a double
quote, a backslash, an exclamation mark, or a
newline.

● Main use is to remove special status of space
as a separator.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

