

Software Tools

C, Unix (Linux), and tools

Variable Length Argument List

● Standard library printf (and its sisters) has a
variable length argument list

● C provides a formal mechanism for writing such
functions

● They are not used very often, but are very
helpful

How it’s done

● File stdarg.h contains a set of macros for this
purpose, plus a data type called va_list

● They are portable, although they me be
implemented in a very different way in every
system

int fun(int arg1, ...);
va_list ap;
va_start(ap, arg1);
va_arg(ap, int); or va_arg(ap, double);
va_end(ap);

Example: minprintf

● A very simplified printf from the book

void minprintf(char *fmt, ...)
{
 va_list ap;
 /* */
 va_start(ap, fmt);
 for (...){
 ...
 Ival = va_arg(ap, int);
 Dval = va_arg(ap, double);
 }
 va_end(ap);
}

Files in the standard library

● Files are handled through the standard I/O
library

● The library provides a portable uniform and
convenient way to handle files

#include <stdio.h>

FILE *fopen(const char *pathname, const char *mode);
int fclose(FILE *stream);
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
size_t fwrite(const void *ptr, size_t size, size_t nmemb,
 FILE *stream);
int ferror(FILE *stream);

Standard open files

● Every C program starts life with three files:
– stdin
– stdout
– stderr

Suicides of programs

● If a process wants to terminate it calls exit.
– A happy process calls exit(0)
– An unhappy program calls exit(1) or exit(2)
– In the main program it can also just issue return 0

or return 1, etc.
● A call to exit deallocates everything and

releases any resources. Also kills its children!
– Linux is not meant to provide good family values.

System calls

● The user can ask the OS for some services using
system calls

● System calls are like functions but they have a
primitive look and feel

● Very often we do not access them directly but
through library functions that make them more
programmer friendly

● System calls are implemented though software
interrupts.

File descriptors

● Files are opened with the system call open
– Similar to the fopen we saw before

● System call open returns a file descriptor
– Quite different from the FILE pointer

● File descriptors are small integers

int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);

Input, Output

● Every process starts life with three open file
descriptors
– Standard input: 0
– Standard output: 1
– Stabdard error: 2

int getchar(void)
{
 char c;
 return (read(0, &c, 1) == 1) : (unsigned char)c : EOF);
}

Files in the standard library

● Files are handled through the standard I/O
library

● The library provides a portable uniform and
convenient way to handle files

#include <stdio.h>

FILE *fopen(const char *pathname, const char *mode);
int fclose(FILE *stream);
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
size_t fwrite(const void *ptr, size_t size, size_t nmemb,
 FILE *stream);
int ferror(FILE *stream);

Directories

● Directories in Unix/Linux are special kinds of files.
● A directory is a list of file names and inode

numbers
– An inode contains all information about the file except

its name
● So two different entries in directories can have the same

inode. So a file can have two different names! (Avoid it, of
course)

● An inode number is an index to an inode table

Seeking

● We can position the reading or writing “head” on
a file anywhere we want.

● System call lseek does this for us.

off_t lseek(int fd, off_t offset, int whence);

Errors

● If a system call encounters an error it returns
(usually) -1 and sets the errno to the apropriate
value

EBADF Bad file descriptor
EACCES Permission denied
EFBIG File too large
EINTR Interrupted function call
EINVAL Invalid argument

See also strerror(3)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

