

Software Tools

C, Unix (Linux), and tools

Structures

● Similar to objects in languages like java or C++
– But much simpler

● They are collections of data that naturally fit
together

● The data can be (and usually are) disimilar
– Intgers, floats, strings, functions or other structures

● Can be copied, assigned, passed as arguments
and returned by functions

Defining Structures

● A couple of examples

struct point {
 int x;
 int y;
 char *name;
} pt; /*defines a data
type and a variable*/

struct point {
 int x;
 int y;
 char *name;
}; *declares a data type*

struct {
 int x;
 int y;
 char *name;
} pt; /*defines
a variable*/

struct point pt;
/*defines a variable*/

Terminology

● A tag is an optional name for the structure.

● The members are x and y.
– AKA fields

● The structure member operator is the dot (.)
– Or the arrow (->) for pointers

struct point {
 int x;
 int y;
};
struct point pt;
pt.x=3;
pt.y=pt.x+1;

Nesting Structures

● Structures can go practically anywhere any
other data type can go, including inside another
structure.

struct point {
 int x;
 int y;
};
struct rect {
 struct point pt1;
 struct point pt2;
};
struct rect screen;
screen.pt1.x=3;

Copying-Assigning Strucures

● Structures behave like other data types
– They are just bigger

● Can be passed as arguments to functions
● Can be returned by functions

struct point pt1, pt2;
pt1.x=3;
pt1.y=pt.x+1;
Pt2 = pt1;

struct point ptadd(struct point pt1,
 struct point pt2)
{
 struct point pt;
 pt.x = pt1.x+pt2.x;
 pt.y = pt1.y+pt2.y;
 return pt;
}
struct point pt1, pt2, pt3;
pt3 = ptadd(pt1,pt2);

Copying-Assigning Strucures

● Copying and assigning structures is OK for
small structures

● For bigger ones it is faster to pass around
pointers

struct point *ptadd(struct point *ppt1,
 struct point *ppt2)
{
 struct point *ppt;
 ppt = pointalloc();
 ppt->x = ppt1->x+ppt2->x;
 ppt->y = ppt1->y+ppt2->y;
 return ppt;
}
struct point pt1, pt2, *ppt3;
ppt3 = ptadd(&pt1,&pt2);

Allocating Structures

● Very often we need to create more structures
● We have to allocate space for them

struct point *pointalloc()
{
 struct point *ppt;
 ppt = (struct point *)malloc(sizeof(struct point));
 return ppt;
}

Structures containing Pointers
to Themsleves

● Very often needed for lists, trees, etc
● Sometimes two structures have pointers to

each other
struct s {
 int x;
 int y;
 struct t *sister;
};
struct t {
 int u;
 int v;
 struct s *sister;
};

struct point {
 int x;
 int y;
 struct point *next;
} *pointlist;

Unions

● Very much like structures but all members
occupy the same space
– No it is not a joke

typedef enum {NUM,OP,NIL} ttag;
struct enodestruct
{
 ttag tag;
 union
 {
 int num;
 struct
 {
 otag optype;
 enode l, r;
 } opstruct;
 } data;
};

Typedef

● It is too much work to type thingsl like
– This: struct enodestruct *e;.

● We can use

typedef enum {NUM, OP, NIL} ttag;
typedef struct enodestruct *enode;
enode e;

Bit-fields

● We often need to manipulate bitfields
● The obvious way is easy but awkward.
● Bitfields are like other elements
● Mostly...
● We cannot:

– Take address
– Treat them as arrays

● The are not very portable
– But with careful coding, they can be.

struct flagstruct {
 unsigned int key:2;
 unsigned int ext:1;
 unsigned int sta:1;
} flags;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

