

Software Tools

C, Unix (Linux), and tools

Address Arithmetic

● We can add an integer to a pointer:
– int *p;
– p+3;

● This represents a pointer to an integer 12 bytes
further down (assuming an integer is 4 bytes)

● The difference of two pointers is an integer
● Pointers to void do not have a defined

arithmetic.

Memory allocation

● Build simple memory allocation functions
● To allocate: alloc.

● To free: afree.
#define ALLOCSZ 10000
static char allocbuf[ALLOCSZ]
static char *allocp=allocbuf;
char *alloc(int n)
{
 if (allocbuf+ALLOCSZ-allocp>=n){
 allocp += n;
 return allocp-n;
 } else
 return NULL;
}

void afree{char *p)
 if (p>=allocbuf &&
 p<allocbuf+ALLOCSZ)
 allocp = p;
}

A few observations

● We declare allocbuf and allocp as static
to keep them private to this file.

● Comparisons between pointer work as
expected if the pointers are from the same
array. It is architecture dependent if they are
not.

● Assignments between pointers work as long as
they are of the same type or one is void *.

Pointers and Arrays

● They are almost the same (you knew that)
● char mssg[] = “whatever”;

– mssg[1] = ‘H’; LEGAL
– mssg++; ILLEGAL

● char *ptr = “something”;
– ptr[1] = ‘O’; ILLEGAL
– ptr++; LEGAL

● Defined arrays are not variables
● Pointers are variables

strcpy

● Four versions:

void strcpy(char *s, char *t)
{
 while ((*s=*t)!=’\0’){
 s++;
 t++;
 }
}

void strcpy(char *s, char *t)
{
 int i;
 i=0;
 while ((s[i]=t[i])!=’\0’)
 i++;
}

void strcpy{char *s, char *t)
{
 while (*s++=*t++)
 ;
}

void strcpy{char *s, char *t)
{
 while ((*s++=*t++)!=’\0’)
 ;
}

Arrays of Pointers

● We have seen argc and argv
● char s[] means s is an array of characters

● char *s[] means the contents of address s is
an array of characters

int main(int argc, char *argv[])
{ /* argc is argument count */

/* argv is an array of strings */
 int i;

 for (i=0; i<argc; i++)
 printf("argv[%d]: %s\n", i, argv[i]);
 return 0;
}

Pointers to pointers

● Int *ip; means the contents of ip is an integer
– Or ip is a pointer to integer

● Int **ipp; means the contents of ipp is a pointer
to integer

● This is one way to create multidimensional
arrays

Multidimensional arrays

● int vec[10]; means vec is an array of 10
integers

● int mat[12][10]; means mat is an array of 12
arrays with 10 integers each

● We do not write
– mat[2,3];

● We write
– mat[2][3];

Problems

● Add the assignment operator to the prefix program.
The program should be able to handle assignments
to single letter variables (all lower case). To do this
create an array with 26 elements, one for each letter.
Function prefix should have two arguments now:
one a pointer to a double as before and one which
is a pointer to an integer index to the array of the 26
variables.

● Write the function strncmp (see the manual page).
Try to be as brief and compact as possible.

Problems

● Write the function strncpy (see the manual
page). Try to be as brief and compact as
possible.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

