

Software Tools

C, Unix (Linux), and tools

Pointers

● Pointers are among the most powerfull aspects of C
● Require disciplined programming and careful testing
● C has many characteristics that make it different

than other languages:
– Pointers and arrays are very closely related
– Pointer arithmetic
– Extremely flexible declaration system

Memory model

● The memory (from a programmers point of view) is a long
series of bytes each one numbered from zero to several
trillions (for a 48 bit address space)

● The zeroth byte is not used by convention
– This is the NULL pointer

● The rest can be used if the OS has given the OK
– If we try to use a byte that has not been Okeyed we get

“Segmentation Violation”

● A char is a single byte, a short two bytes, an int 4, a
float 4, a double 8, etc.

The address of a variable

● An address looks like an integer, but is treated
differently

● The adress of an int is the address of the “first”
byteWe can get the address of a variable with the
prefix operator &.
– c = 3;
– ptr = &c;

● We get the contents of an address with *.
– *ptr is equal to 3.

How to read these symbols

● We read &c as the address of c.

● We read *ptr as the contents of address ptr.
● So if we read

– int k;

● As k is an integer, then we read
– int *ptr;

● As the content of address ptr is an integer.

Examples

● If we have the following definitions
– int x, *ptr;

● Then the statements
– ptr = &x;
– *ptr = 5;

● Result in x==5. And
– *ptr +=3;

● Result in x becoming 8.

Pointers and Function Arguments

● Lets try to write a swap function
● Does not work!

void badswap(int x, int y)
{
 int t;

 t = x;
 x = y;
 y = t;
}

Try again

● Here we declare pointers to the variables
● And it works!

{
 int x, y;

 x = 3;
 y = 2;
 swap(&x, &y);
}

void swap(int *xp, int *yp)
{
 int t;

 t = *xp;
 *xp = *yp;
 *yp = t;
}

Pointer and Array Magic

● Pointers and arrays are almost the same in C
● If we write

– int *p, a[10];
– p=a;

● Then
– *p == a[0];
– *a == a[0]
– *(a+1) == a[1];
– &a[2] == a+2;

Some Other Cryptic Stuff

● The definition
– char s[];

● Is the same as
– char *s;

● We can have negative indices!
– s[-1];

● As long as we are sure the element exists.

Problems

● Write a recursive function rec_rev(char s[], int
sz) the reverses a string s[] of sixe sz
recursively in place.

● Write a recursive prefix expression calculator
that evaluates expressions recursively. So
something like + 2 * 3 4 would evaluate to 14

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

