

Digital Logic

Logic And Verilog

Gates

The most obvious gates
are AND and OR

We can combine them
to implement any logic
function

Conventions

Zero volts is logic-0

5 volts is logic-1 (that’s old fashioned TTL logic)

Unless we use negative logic

Most computers use smaller voltages now

1.5 volt is used by DDR3 memories

In this case 1.5 volt is logic-1

Due to electrical noise the logic levels are defined
by a range.

Other gates

The little circle means
”not”

NOR gate (not-OR)

NAND gate

WHAT???

WHAT???

Truth Tables

It is the opposite of an
AND gate

It is a NAND gate

Example

Try to figure out what
this does

It is a one bit adder with
carry in.

Simpler Drawing

Programmable Logic Arrays

PLA for short

The dots are really fuses inside a chip

Fuses can be programmed once

Can implement any logic function

Modern “fuses” can be programmed many times

PLAs on hormones are called

 Field Programmable Gate Arrays (FPGA)

PLAs

AND gate array

OR gate array

Standard Components

Decoders

Multiplexers

ROM

Decoder

Multiplexer

ROM

Boolean Algebra Laws

Identity Law: A+0=A, A*1=A

Zero & One Law: A+1=1, A*0=0

Existence of complement: A+A' = 1, A*A' = 0

Commutative Law: A+B=B+A, A*B=B*A

Associative Law: A+(B+C)=(A+B)+C

 A*(B*C)=(A*B)*C

Distributive Law: A*(B+C)=A*B+A*C

 A+(B*C)=(A+B)*(A+C) (surprising!)

De Morgan's Law

(A+B)' = A' * B'

(A*B)' = A' + B'

Principle of Duality

AND and OR are symmetric

So is 0 and 1

Optimization

Two different logic expressions can have exactly
the same behavior.

Two different expressions with identical behavior
may have different cost of implementation

Choosing the cheapest is optimization

May have to satisfy other criteria

 Propagation delay, no glitches, etc

Optimization

AB + AB'

=A(B+B')

=A*1=A

A'B'C + ABC

= (A'B' + AB)C

=((A'B' + A)(A'B' + B))C

(B' + A)(A'+B)C

Half Adder

S = A'B + AB'

C = AB AB SC
00 00
01 10
10 10
11 01

Full Adder

S = A'B'C + AB'C' + A'BC’ + ABC

Cout = ABC + A'BC + ABC' + AB'C

C
out

 = AB + BC + CA
 (optimized)

ABC SC
000 00
001 10
010 10
011 01
100 10
101 01
110 01
111 11

Don’t Cares

 We use don’t cares when we do not care if for a
certain combination of input, the output is true
or false.

 When this input is illegal and does not appear
 When this input appears only when the output is

disabled
 They are very useful when optimizing

 Try it with both outputs and see which one is
cheaper

Verilog

A hardware description language

Can be used to design, optimize and simulate
hardware

Started in the mid-80's as a hardware simulation
system

Hardware synthesis was added later

Its main competitor is VHDL

What can Verilog do?

Describe a circuit for simulation purposes

Many of the Verilog constructs can be
synthesizeable.

Allows the designer to specify

Behavior and/or

Structure

Structure of a Verilog Module

Contains “initial” constructs

Parallel blocks called “always” constructs

Continuous assignments to specify combinational
circuits (gates w/o memory)

Instances of modules

Elements of Verilog

Wire: mathematical abstraction of a real wire

Can have 4 possible values!!

True or 1

False or 0

X: unknown (not yet defined, unconnected etc)

Z: high impedance
Electrically disconnected. A smart trick electronics engineers have
invented.

Elements of Verilog

Registers (reg): Are memory elements

The Verilog compiler may map them to actual
memory elements (flip-flops)

Same set of possible values

Elements of Verilog

Constants

Can be specified as plain constants like 3, 15, 20...

Often we want to specify the bit-width of a constant

4'b0011 is 4-bit representation of 3

5'b00011 is a 5-bit representation of 3

-4'b0011 is 4-bit representation of -3 (2's compl.)

4'hF is 4-bit representation of 15

Operators in Verilog

+,-,*,/ like C

&, |, ~, ^ again like C

==, !=, <, >, <=, >= like C

<<, >> like C

con?expr1:expr2 like C

Operators in Verilog

But adds to C

Unary &, |, ^
Apply the operator on all bits of the operand

{A,B} the bits of A followed by the bits of B

{x{const}} is {const,const... x times}

Combinational Circuits

A network of gates

Directed graph

There should be no cycles (if there are it is not
really combinational)

Output determined exclusively by inputs

Implements logic functions

Combinational Circuits

module h_adder(A, B, S, Cout)
 input A, B;
 output S, Cout;
 assign S = A^B;
 assign Cout = A&B;

endmodule

Combinational Circuits


module h_adder(A, B, S, Cout)
 input A, B;
 output S, Cout;
 always @(A, B)
 begin
 S <= A^B;
 Cout <= A&B;
 end
endmodule

Memory elements

Memory Elements

We can think of memory elements as
combinational circuits with feedback

We would rather think of them as little black boxes

Sometimes memory is implemented using other
technologies (capacitors for DRAM)

Combinational Circuits

Module half_adder(A,B,Sum,Carry);

 input A,B;

 output Sum, Carry;

 assign Sum = A^B;

 assign Carry = A & &;

endmodule

Combinational Circuits

Use the assign keyword

They represent permanent connections

The assign keyword can specify only
combinational circuits

Combinational circuits can be specified with the
always construct as well

The always construct can also specify sequential
circuits

The always construct

Module half_adder(A,B,Sum,Carry)

 input A,B;

 output reg S, C

 always @(A,B) begin

 case ({A,B})

 2'b00: begin S=0; C=0; end;

 2'b01: begin S=1; C=0; end;

 2'b10: begin S=1; C=0; end;

 2'b11: begin S=0; C=1; end;

 end

endmodule

Combinational with always

Previous example used always to implement a
half-adder

Uses blocking assignments

Pretty much the same as C

If properly defined, most compilers will not use
flip-flops to implement it

 If all input signals are on sensitivity list

Sequential Circuits

Any circuit that contains memory

If it contains memory then it has “state”

If it has state then the state changes, so it goes
through a sequence of states

Hence the name sequential.

Sequential Circuits

Sequential Circuits

How come signals don't rush around the loop
uncontrollably?

This is where the “clock” comes in

It is the same clock you see on the specs of your
CPU

With every clock pulse the signal goes around
once

These are called synchronous sequential circuits

There are also asynchronous (we do not deal with
them)

Typical Latch

Still....

Unless the width of the clock pulse is wisely
selected...

 The signal will travel around more than once

These latches are useful in some cases, but not
good enough for our current task

Falling edge trigger FF

Edge triggered D-Flip-Flop

Module DFF(clock,D,Q,Qb)

 input clock, D;

 output reg Q;

 output Qb;

 assign Qb = ~Q;

 always @(posedge clock)

 Q <= D;

endmodule

Timings

Timing is complex

We use a simplified model

Setup time: time the input to the FF has to be
stable before the clock edge

Hold time: time the input has to be stable after the
clock edge

Multibit Wires and Registers

reg [31:0] regA;

regA[0] is the LSB;

wire [31:0] ALUout;

reg [31:0] regfile[0:31];

regfile[0] is the first register in the register file.

RISC-V ALU
module RV_ALU (ALUctl, A, B, ALUOut, Zero);

 input [3:0] ALUctl; input [63:0] A,B;

 output reg [63:0] ALUOut; output Zero;

 assign Zero = (ALUOut==0); //Zero is true if ALUOut is 0

 always @(ALUctl, A, B) begin //reevaluate if these change

 case (ALUctl)

 0: ALUOut <= A & B;

 1: ALUOut <= A | B;

 2: ALUOut <= A + B;

 6: ALUOut <= A - B;

 7: ALUOut <= A < B ? 1 : 0;

 12: ALUOut <= ~(A | B); // result is nor

 default: ALUOut <= 0;

 endcase

 end

endmodule

Register File

Register File: read

Register File: write

Register File: Verilog

module rfile(R1,R2,W,WD,Wctl,RD1,RD2,clock)

 input [4:0] R1,R2,W; // Select what to read/write

 input [63:0] WD;

 input Wctl, clock;

 output [63:0] RD1,RD2;

 reg [63:0] RF[31:0];

 assign RD1 = RF[R1];

 assign RD2 = RF[R2];

 always @(posedge clock)

 if (Wctl) RF[W] <= WD;

endmodule

Specifying Gates

Verilog allows the designer to specify individual
gates

Can be bulky

Similar syntax can be used for user defined
modules

Half Adder

module HA(A,B,S,C)

 input A, B;

 output S, C;

 wire Bn, An, Abn, AnB;

 not N1(An,A);

 not N2(Bn,B);

 and (Abn,A,Bn);

 and (AnB,An,B);

 or (S,ABn,AnB);

 and (C,A,B);

endmodule

Speeding Up Addition

Carry propagation is what slows down addition

Sometimes the LSB of input will affect the MSB or
the carry out

We design for the worst case scenario

The simpler adders are called ripple adders

Carry LookAhead

a0, a1, a2, etc; b0, b1, b2, etc are the inputs

c0, c1, c2 are the carries.

c1 = b0 c0 + a0 c0 + a0 b0

c1 = a0 b0 + c0 (a0 + b0)

c1 = g0 + c0 p0

g0 = a0 b0; p0 = a0 + b0;

Carry LookAhead

Define

g
i
 = a

i
 b

i

p
i
 = a

i
 + b

i

Then

c
i+1

 = g
i
 + p

i
 c

i

Carry LookAhead

c1 = g0 + p0 c0

c2 = g1 + p1 g0 + p1 p0 c0

c3 = g2 + p2 g1 + p2 p1 g0 + p2 p1 p0 c0

And…

c4 = g3 + p3 g2 + p3 p2 g1 + p3 p2 p1 g0 +

 p3 p2 p1 p0 c0

c4 = G + P c0

Where G = g3 + p3 g2 + p3 p2 g1 + p3 p2 p1 g0

And P = p3 p2 p1 p0

Delays

 For p0, p1, p2, p3 ………….. 1
 For g0, g1, g2, g3 ………….. 1
 For c1, c2, c3 ……………….. 3
 For c4 ………………………… 3 or 4
 For P …………………………. 2
 For G …………………………. 3

4-bit Adder

Full adder Full adder Full adderFull adder

Carry Look Ahead

a1b3 a2 b2 b1 a0 b0

c1, c2, c3, c4

a3

S2 S1 S0S3 g2
p2

g1
p1

g0
p0

g3
p3

G
P

cin

16-bit Adder

4-bit adder 4-bit adder 4-bit adder4-bit adder

Carry Look Ahead

64-bit Adder

16-bit adder 16-bit adder 16-bit adder16-bit adder

Carry Look Ahead

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

