Software Tools

C, Unix (Linux), and tools

Portablility Issues

This works fine for ASCII
Does not work for EBCDIC

So just In case you ever encounter an EBCDIC
computer you should use:

— Isdigit(c)

- Instead of

- ¢c>='0" && c<='9’

C has several functions that handle these subtle
ISSuUes.

Type promotion

* When we add (subtract, whatever) two entities of different
type the “lower” type is “promoted” to the “higher”

* Long double Is higher than double, higher than float,
int.

* For integral types things get a bit tricky:

- If an integral type can be converted to an appropriately sized int

without loss it is. O/w it is converted to an appropriately sized
unsigned 1int.

— Integer conversions happen by truncation, zero padding or sign
extension. Often are implementation dependant.

- Thus -1L>1UuL !

Pseudo-random function.

unsigned long next=1;
int rand(void)
{
next = next * 1103515245 + 12345;

return (unsigned) (next/65536)%32768;
}

Increment-Decrement Operators

* Very useful operator. Makes It easy to write
compact code

* Comes In two flavours: prefix and postfix.
- The value of n++ (postfix) is the original value of n.
- The value of ++n (prefix) is the new value of n.

* Similarly for decrementing ——n and n—-

Increment-Decrement Operators

* Very useful operator. Makes It easy to write
compact code

* Comes In two flavours: prefix and postfix.
- The value of n++ (postfix) is the original value of n.
- The value of ++n (prefix) is the new value of n.

* Similarly for decrementing ——n and n—-

getline

int KRgetline (char s[],
{

int ¢, 1;

for (i=0; i<lim-1 &&
s[i] = c¢;

if (c=='\n') {
s[i] = '"\n';
=R 7

}

s[i] = '"\0';

return 1i;

int 1lim)

(c=getchar()) !=EOF && c!='\n"';

i++)

String concatenate (strcat)

int KRstrcat (char s[], char t[])
{

int 1, 7J;

1i=7=0;

while (s[i]!="\0") i++;

while ((s[i++]1=t[j++]) !'= *\0’');
}

Bitwise operators

* Very useful for manipulating bits. This is how it is done in C.

e These are:
- &
-
- <LK
- >>

~v

* They are different from logical operators (s& or | |)

Bitwise operators

* We can get the last 8 bits of an int:
- X = X&OXFF;
- X &= OxFF,;
* We can get the previous 7 bits:
- X = (x>>8)&0xFF;
* We can set the previous 7 bits x to the last 7
bits of y:
- X = (X&(0177<<8)) | ((y&0177)<<8);

Fancy Assignment Operators

* Another great thing about C is the fancy
assignment operators like:

- i 4= 2;

* Most binary operators have their assignment
version.

* Very useful when the |Ihs Is a messy little animal:

- yyval [parse.current + parse.offset] += 2;

* Easy to read, easy to write.

Conditional Expressions

* We all know the good old i f statement.
* There is also the switch-case statement.
— Be careful with this, it is tricky.

* C has also conditional expressions:
-7 = (2>=0)?2:-7Z;
— This Is the absolute value of Z.
* Can make the code more compact and/or more readable.

* Allow tricky #defined macros.

Problems

 Write a function int invert (int x, int
p, 1int n) thatinverts bits p. . .p+n of x.

 Write a function void ToHighLow (int n,
char s[]) thataccepts aninteger n and a

string s that has enough space and writes out
the binary version of it but instead or writing

zeros and ones it writes H (for high or 1) and L
(for Low or 0). Leading Ls are omitted.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

