

Software Tools

C, Unix (Linux), and tools

Portability Issues

● This works fine for ASCII
● Does not work for EBCDIC
● So just in case you ever encounter an EBCDIC

computer you should use:
– isdigit(c)
– Instead of
– c>=’0’ && c<=’9’

● C has several functions that handle these subtle
issues.

Type promotion

● When we add (subtract, whatever) two entities of different
type the “lower” type is “promoted” to the “higher”

● Long double is higher than double, higher than float,
int.

● For integral types things get a bit tricky:
– If an integral type can be converted to an appropriately sized int

without loss it is. O/w it is converted to an appropriately sized
unsigned int.

– Integer conversions happen by truncation, zero padding or sign
extension. Often are implementation dependant.

– Thus -1L>1UL !!!

Pseudo-random function.

unsigned long next=1;
int rand(void)
{
 next = next * 1103515245 + 12345;
 return (unsigned)(next/65536)%32768;
}

Increment-Decrement Operators

● Very useful operator. Makes it easy to write
compact code

● Comes in two flavours: prefix and postfix.
– The value of n++ (postfix) is the original value of n.

– The value of ++n (prefix) is the new value of n.

● Similarly for decrementing --n and n--

Increment-Decrement Operators

● Very useful operator. Makes it easy to write
compact code

● Comes in two flavours: prefix and postfix.
– The value of n++ (postfix) is the original value of n.

– The value of ++n (prefix) is the new value of n.

● Similarly for decrementing --n and n--

getline

int KRgetline(char s[], int lim)
{
 int c, i;

 for (i=0; i<lim-1 && (c=getchar())!=EOF && c!='\n'; i++)
 s[i] = c;
 if (c=='\n') {
 s[i] = '\n';
 i++;
 }
 s[i] = '\0';
 return i;
}

String concatenate (strcat)

int KRstrcat(char s[], char t[])
{
 int i, j;

 i=j=0;
 while (s[i]!=’\0’) i++;
 while ((s[i++]=t[j++]) != ‘\0’);
}

Bitwise operators

● Very useful for manipulating bits. This is how it is done in C.
● These are:

– &
– |
– ^
– <<
– >>
– ~

● They are different from logical operators (&& or ||)

Bitwise operators

● We can get the last 8 bits of an int:
– x = x&0xFF;
– x &= 0xFF;

● We can get the previous 7 bits:
– x = (x>>8)&0xFF;

● We can set the previous 7 bits x to the last 7
bits of y:
– x = (x&(0177<<8)) | ((y&0177)<<8);

Fancy Assignment Operators

● Another great thing about C is the fancy
assignment operators like:
– i += 2;

● Most binary operators have their assignment
version.

● Very useful when the lhs is a messy little animal:
– yyval[parse.current + parse.offset] += 2;

● Easy to read, easy to write.

Conditional Expressions

● We all know the good old if statement.

● There is also the switch-case statement.
– Be careful with this, it is tricky.

● C has also conditional expressions:
– Z = (Z>=0)?Z:-Z;

– This is the absolute value of Z.

● Can make the code more compact and/or more readable.
● Allow tricky #defined macros.

Problems

● Write a function int invert(int x, int
p, int n) that inverts bits p...p+n of x.

● Write a function void ToHighLow(int n,
char s[]) that accepts an integer n and a
string s that has enough space and writes out
the binary version of it but instead or writing
zeros and ones it writes H (for high or 1) and L
(for Low or 0). Leading Ls are omitted.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

