

Software Tools

C, Unix (Linux), and tools

Grep and regular expressions

● Grep searches for patterns in files
● Prints lines that match the pattern
● Patterns are regular expressions
● Comes (came) in a few flavours

– Grep: uses basic regular expressions
– Egrep: uses extended regular expressions
– Rgrep: recursively seach directories
– Fgrep: fixed patterns (not regular expressions)

Modern Versions of grep

● Sister commands are deprecated.
● Functionality of old sister commands is now

provided by grep through flags:
– -F: for fgrep
– -E: for egrep
– -r: for rgrep

● By default grep uses extended regular
expressions

Regular Expressions

● Regular expressions describe a set of strings
● Have rules similar to other mathematcal expressions
● Operators can combine simpler expressions into more

complex ones
● The simplest expressions match a single character

– Almost any character matches itself
– Bracket expressions match lists of characters enclosed in

brackets “[“, “]”.
– Bracket expressions are similar to the ones in bash.

Bracket Expressions

● The simplest is to have a list of characters
between brackets

● Ranges are among the most common extensions
– Like [a-z]
– Can be affected by the locale

● If the first character is the carret “^” it matches
the complement of the characters or ranges.

● To include the dash “-” put it at the end.

Other simple expressions

● A dot “.” matches any character
● A carret “^” matches the empty string at the

beginning of a line
● A dollar “$” matches an empty string at the end

of a line
● The sequences “\<” and “\>” match the empty

string at the beginning and the end of a word
respectively.

Repeat operators

● A star “*” matches the previous expression 0 or more
times
– Notice the difference with wildcards.

● A plus “+” matches the previous expression 1 or more
times

● A question mark “?” the previous expression 0 or 1 times.
● A number in braces matches the previous expression that

many times
– Works for ranges too like {2,4} or {,6} or {2,}

Concatenation and Alternation

● Two regular expressions written one after the
other match the concatenation of the respective
strings

● Two regular expressions separated by a pipe “|”
match either the one of the other (“OR” like)

● Alternation has lower precedence over
concatenation which has lower precedence
than repetition

Examples

● grep m[a-z]in\(*.c
● grep m[^a]in\(*.c
● grep m[^a].*\(*.c
● grep -E '[*+-]{2}' *.c
●

Bash Scripts

● Commands that are used interactively in bash
can be put in a file and form a script.

● Bash is a sophisticated scripting language
● Scripting languages are usually interpreted and

deal mainly with text
● They are intended for simple programs that

integrate various software components.

Anatomy of a shell script

● Shell scripts start with #!/bin/bash
– Awk sctipts (can) start with #!/bin/awk
– PHP scripts start with #!/bin/php

● The comments start with pound “#” and end
with a newline.

● They are usually small and serve as glue
software

● Other scripting languages are awk, tcl, php, etc

Variables

● Variables work the same way as in interactive
bash

● There are a few other predefined variables:
– Name of the script: $0
– Arguments $1, $2, ..., $9
– Number of arguments: $#
– All arguments: $*

Back Quotes

● To use the std output of a command as
argument or assign it to a variable we use
backquotes
– Example: date=`date`; echo date is $date

● They are different from single quotes and
double quotes.

Single and double quotes

● Single quotes (next to the return key) transmit
the enclosed text verbatim as one argument

● Double quotes allow variable substitutions
– Example: echo “$SHELL”; echo ‘$SHELL’

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

