

Software Tools

C, Unix (Linux), and tools

Initialization of Arrays

● We very often initialize static and external
variables when defining them
– This includes arrays

● Initializing automatic variables when defining
them is a matter of style and convenience
– Many programmers prefer to do it with explicit

assignment

Initializing 2-D arrays

● A 2-D array is just a bunch of consecutive
chunks of memory
– Array int A[3][4] is 12 integers in a row (48 bytes)
– We initialize with

● static int A[3][4] = {{1,2,3,4},{5,6,7,8},{9,10,11,12}};
● The memory for this array will be initialized.

6 7 85 10 11 1292 3 41

Initializing pointers to pointers

● An array using pointers to pointers looks
different

● Needs more memory space, more memory
references

● Far more flexible.

6 7 85

10 11 129

2 3 41

Initializing Pointers to Pointers

● We do it with similar syntax

43

65

21

static int A1[2] = {1, 2};
static int A2[2] = {3, 4};
static int A3[2] = {5, 6};
static int *(A[]) = {A1, A2, A3};

A
A1

A2

A3

strcpy

● Four versions:

void strcpy(char *s, char *t)
{
 while ((*s=*t)!=’\0’){
 s++;
 t++;
 }
}

void strcpy(char *s, char *t)
{
 int i;
 i=0;
 while ((s[i]=t[i])!=’\0’)
 i++;
}

void strcpy{char *s, char *t)
{
 while (*s++=*t++)
 ;
}

void strcpy{char *s, char *t)
{
 while ((*s++=*t++)!=’\0’)
 ;
}

Arrays of Pointers

● We have seen argc and argv

● char s[] means s is an array of characters

● char *s[] means the contents of address s is
an array of characters

int main(int argc, char *argv[])
{ /* argc is argument count */

/* argv is an array of strings */
 int i;

 for (i=0; i<argc; i++)
 printf("argv[%d]: %s\n", i, argv[i]);
 return 0;
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

