
SERVER-SIDE

NODE JS II
EXPRESS JS
SEQUELIZE ORM
ADVANCED JAVASCRIPT

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 2

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

VERSION

v1.2 13 November 2021

v1.1 9 November 2021

v1.0 5 November 2021

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 3

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

ACKNOWLEDGMENTS

THANKS TO:
Hamzeh Roumani, who has shaped EECS-4413 into a leading hands-on CS course at EECS
and who generously shared all of his course materials and, more importantly, his teaching
philosophy with me;
Parke Godfrey, my long-suffering Master’s supervisor and mentor; and
Suprakash Datta for giving me this opportunity to teach this course.

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 4

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

PRINTABLE VERSION OF THE TALK

Download PDF

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 5

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/files/slides/06-nodejs-2.pdf
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

EXPRESSJS

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 7

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

ABOUT EXPRESS
Express is a minimal and flexible Node.js web application framework that provides a
robust set of features for web and mobile applications. It is an open source framework
developed and maintained by the Node.js foundation.

ExpressJS is a web application framework that provides you with a simple API to build
websites, web apps and back ends. With ExpressJS, you need not worry about low level
protocols, processes, etc. Express provides a minimal interface to build our applications.
It provides us the tools that are required to build our app. It is flexible as there are
numerous modules available on npm, which can be directly plugged into Express.
Express was developed by TJ Holowaychuk and is maintained by the Node.js foundation
and numerous open source contributors.

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 8

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

EXPRESS ROUTING
Routing refers to determining how an application
responds to a client request to a particular endpoint,
which is a URI (or path) and a specific HTTP request
method (GET, POST, and so on). Each route can have one
or more handler functions, which are executed when the
route is matched. Route definition takes the following
structure:

Where:

app is an instance of express.

METHOD is an HTTP request method, in lowercase.

PATH is a path on the server.

HANDLER is the function executed when the route is matched.

app.METHOD(PATH, HANDLER)

const express = require('express');
const app = express();

// Respond with Hello World! on the homepage:
app.get('/', function (req, res) {
 res.send('Hello World!');
});

// Respond to POST request on the root route (/), the app’s home page:
app.post('/', function (req, res) {
 res.send('Got a POST request');
});

// Respond to a PUT request to the /user route:
app.put('/user', function (req, res) {
 res.send('Got a PUT request at /user');
});

// Respond to a DELETE request to the /user route:
app.delete('/user', function (req, res) {
 res.send('Got a DELETE request at /user');
});

app.listen(3000);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 9

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

EXPRESS STATIC FILES
To serve static files such as images, CSS files, and JavaScript files, use the express.static built-in middleware function in Express.

For example, use the following code to serve images, CSS files, and
JavaScript files in a directory named public :

Now, you can load the files that are in the public directory:

To use multiple static assets directories, call the express.static
middleware function multiple times:

To create a virtual path prefix (where the path does not actually exist in the file system) for files that are served by
the express.static function, specify a mount path for the static directory, as shown below:

Now, you can load the files that are in the public directory from the /static path prefix.

However, the path that you provide to the express.static function is relative to the directory from where you launch
your node process. If you run the express app from another directory, it’s safer to use the absolute path of the
directory that you want to serve:

app.use(express.static('public'));

http://localhost:3000/images/kitten.jpg

http://localhost:3000/css/style.css

http://localhost:3000/js/app.js

http://localhost:3000/images/bg.png

http://localhost:3000/hello.html

app.use(express.static('public'));

app.use(express.static('files'));

app.use('/static', express.static('public'));

http://localhost:3000/static/images/kitten.jpg

http://localhost:3000/static/css/style.css

http://localhost:3000/static/js/app.js

http://localhost:3000/static/images/bg.png

http://localhost:3000/static/hello.html

const path = require('path');

app.use('/static', express.static(path.join(__dirname, 'public')));

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 10

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

EXPRESS SESSION
A website is based on the HTTP protocol. HTTP is a stateless protocol which means at the end of
every request and response cycle, the client and the server forget about each other. This is
where the session comes in. A session will contain some unique data about that client to allow
the server to keep track of the user’s state. In session-based authentication, the user’s state is
stored in the server’s memory or a database.

To initialize the session, we will set the session middleware inside the routes of the individual
HTTP requests. When a client sends a request, the server will set a session ID and set the cookie
equal to that session ID. The cookie is then stored in the set cookie HTTP header in the browser.
Every time the browser (client) refreshes, the stored cookie will be a part of that request.

Resources:

$ npm install express-session

Session Management in Node.js using ExpressJS and Express Session

express-session - npm

ExpressJS - Sessions

const express = require('express');

const session = require('express-session');

const app = express();

// Use the session middleware

app.enable('trust proxy');

app.use(session({

 secret: "secret",

 resave: true,

 saveUninitialized: true,

 proxy: true

}));

app.get('/', (req, res) => {

 if (req.session.page_views) {

 req.session.page_views++;

 res.send("You visited this page " + req.session.page_views + " times");

 } else {

 req.session.page_views = 1;

 res.send("Welcome to this page for the first time!");

 }

});

app.listen(0);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 11

https://www.section.io/engineering-education/session-management-in-nodejs-using-expressjs-and-express-session/
https://www.npmjs.com/package/express-session
https://www.tutorialspoint.com/expressjs/expressjs_sessions.htm
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

SEQUELIZE
OBJECT RELATIONAL MAPPING

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 13

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

OBJECT RELATIONAL MAPPING
Object-Relational Mapping (ORM) is a technique that lets you query and manipulate data from a
database using an object-oriented paradigm. When talking about ORM, most people are referring to a
library that implements the Object-Relational Mapping technique, hence the phrase “an ORM”.

An ORM library is a completely ordinary library written in your language of choice that encapsulates
the code needed to manipulate the data, so you don’t use SQL anymore; you interact directly with an
object in the same language you’re using.

Applica�on Code

ORM API

ORM Driver

Databases

SQLiteOracle

. . .

Database
Objects Data

Postgres

OOP
Objects

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 14

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

KEY FEATURES
Some of the key features are as follows:

It makes the application independent of the database management
system being used in the backend, and so you can write a generic
query. In case of migrating to another database, it becomes fairly a
good deal to have ORM implemented in the project.
Hassles of coders are reduced to learn SQL syntaxes separately for
whichever database being used to support the application. Coders
can shi� their focus on optimizing the code and improving
performance rather than dealing with connectivity issues.
All small or big changes can be carried out via ORM, so there are no
such restrictions when we deal with data. For example, JDBC comes
with a lot of restrictions on extracting a result-set, process it and then
commit it back to the database. This is not the case with ORMs. Even
a single cell in the database can be retrieved, changed and saved
back.

The connection becomes robust, secure as there will be less
intervention in code. It will handle all the necessary configurations
required to map application programming language with the
database’s query language since there will be lesser intervention
promoting secure application as a whole.
There is a fairly large deal of ORMs present in the market as per the
application language used. One can choose easily as per business
requirements.
There is an attached disadvantage in using ORM as well. That is when
the database is in legacy file systems and disarranged. It becomes a
task to arrange a whole lot of data and then map this with ORM. It is
thereby suggested to use ORM when the back end is fairly managed.

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 15

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

PROS AND CONS
Using ORM saves a lot of time because:

DRY: You write your data model in only one place, and it’s easier to
update, maintain, and reuse the code.
A lot of stuff is done automatically, from database handling to I18N.
It forces you to write MVC code, which, in the end, makes your code a
little cleaner.
You don’t have to write poorly-formed SQL (most Web programmers
really suck at it, because SQL is treated like a “sub” language, when in
reality it’s a very powerful and complex one).
Sanitizing; using prepared statements or transactions are as easy as
calling a method.

Using an ORM library is more flexible because:

It fits in your natural way of coding (it’s your language!).
It abstracts the DB system, so you can change it whenever you want.
The model is weakly bound to the rest of the application, so you can
change it or use it anywhere else.
It lets you use OOP goodness like data inheritance without a
headache.

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 16

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

PROS AND CONS
Some of other highlights of ORM are:

No need to learn a database query language.
It propagates the idea of data abstraction, thus improving data security.
Instead of storing big procedures in pl/SQL in the backend, these can be saved in the
frontend. It improves flexibility to make changes.
If there are many relations like 1: m, n: m and lesser 1:1 in database structure, then
ORM works well.
It reduces the hassles for coders by reducing the database query part handling.
Queries via ORM can be written irrespective of whatever database one is using in the
back end. This provides a lot of flexibility to the coder. This is one of the biggest
advantages offered by ORMs.
These are available for any object-oriented language, so it is not only specific to one
language.

But ORM can be a pain:

You have to learn it, and ORM libraries are not
lightweight tools;
You have to set it up. Same problem.
Performance is OK for usual queries, but a SQL master
will always do better with his own SQL for big projects.
It abstracts the DB. While it’s OK if you know what’s
happening behind the scene, it’s a trap for new
programmers that can write very greedy statements,
like a heavy hit in a for loop.

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 16

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

ADVANCED JAVASCRIPT

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 18

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

JAVASCRIPT CALLBACKS
In JavaScript, a callback is a function passed into another function as an argument to be executed later.

WRONG ORDER

Source:

function download(url) {
 setTimeout(() => {
 console.log(`Downloading ${url} ...`);
 }, 3 * 1000);
}

function process(picture) {
 console.log(`Processing ${picture}`);
}

let url = 'picture.png';

download(url);
process(url);

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Processing picture.png
Downloading picture.png ...

JavaScript Callbacks

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 19

https://www.javascripttutorial.net/javascript-callback/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

JAVASCRIPT CALLBACKS
In JavaScript, a callback is a function passed into another function as an argument to be executed later.

FIXED

Source:

function download(url, callback) {
 setTimeout(() => {
 console.log(`Downloading ${url} ...`);
 callback(url);
 }, 3000);
}

function process(picture) {
 console.log(`Processing ${picture}`);
}

download('picture.png', process);

1
2
3
4
5
6
7
8
9
10
11
12

Downloading picture.png ...
Processing picture.png

JavaScript Callbacks

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 19

https://www.javascripttutorial.net/javascript-callback/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

JAVASCRIPT CALLBACKS
In JavaScript, a callback is a function passed into another function as an argument to be executed later.

FIXED

Source:

function download(url, callback) {
 setTimeout(() => {
 console.log(`Downloading ${url} ...`);
 callback(url);
 }, 3000);
}

download('picture.png', function (picture) {
 console.log(`Processing ${picture}`);
});

1
2
3
4
5
6
7
8
9
10

Downloading picture.png ...
Processing picture.png

JavaScript Callbacks

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 19

https://www.javascripttutorial.net/javascript-callback/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

JAVASCRIPT CALLBACKS
In JavaScript, a callback is a function passed into another function as an argument to be executed later.

HANDLING ERRORS

Source:

function download(url, success, failure) {
 setTimeout(() => {
 console.log(`Downloading ${url} ...`);
 // ... download ...
 if (status === 200) {
 success(url);
 } else {
 failure(url);
 }
 }, 3000);
}

download('picture.png',
 (picture) => console.log(`Processing ${picture}`),
 (picture) => console.log(`Handling error...`)
);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Downloading picture.png ...
Processing picture.png

Downloading picture.png ...
Handling error...

JavaScript Callbacks

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 19

https://www.javascripttutorial.net/javascript-callback/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

JAVASCRIPT CALLBACKS
In JavaScript, a callback is a function passed into another function as an argument to be executed later.

NESTING CALLBACKS

Source:

function download(url, callback) {
 setTimeout(() => {
 console.log(`Downloading ${url} ...`);
 callback(url);
 }, 3000);
}

download('picture1.png', (picture) => {
 console.log(`Processing ${picture}`);
 download('picture2.png', (picture) => {
 console.log(`Processing ${picture}`);
 download('picture3.png', (picture) => {
 console.log(`Processing ${picture}`);
 });
 });
});

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Downloading picture1.png ..
Processing picture1.png
Downloading picture2.png ..
Processing picture2.png
Downloading picture3.png ..
Processing picture3.png

JavaScript Callbacks

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 19

https://www.javascripttutorial.net/javascript-callback/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

JAVASCRIPT CALLBACKS
In JavaScript, a callback is a function passed into another function as an argument to be executed later.

CALLBACK HELL
Nesting many asynchronous functions
inside callbacks is known as the Pyramid
of Doom or Callback Hell:

To avoid the pyramid of doom, you use
promises or async/await functions.

Source:

asyncFunction(function () {
 asyncFunction(function () {
 asyncFunction(function () {
 asyncFunction(function () {
 asyncFunction(function () {
 // ...
 });
 });
 });
 });
});

1
2
3
4
5
6
7
8
9
10
11

JavaScript Callbacks

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 19

https://www.javascripttutorial.net/javascript-callback/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

JAVASCRIPT CLOSURE
A closure is the combination of a function bundled together (enclosed) with references
to its surrounding state (the lexical environment). In other words, a closure gives you
access to an outer function’s scope from an inner function. In JavaScript, closures are
created every time a function is created, at function creation time.

function makeFunc() {
 let name = 'Mozilla'; // name is a local variable
 return function () { // the inner function, a closure
 alert(name); // use variable in parent function
 };
}

let myFunc = makeFunc();
myFunc();

1
2
3
4
5
6
7
8
9

function makeCounter() {
 let privateCounter = 0;
 function changeBy(val) {
 privateCounter += val;
 }
 return {
 increment() {
 changeBy(1);
 },
 decrement() {
 changeBy(-1);
 },
 value() {
 return privateCounter;
 }
 };
}

let counter1 = makeCounter();
let counter2 = makeCounter();

alert(counter1.value()); // 0

counter1.increment();
counter1.increment();
alert(counter1.value()); // 2

counter1.decrement();
alert(counter1.value()); // 1
alert(counter2.value()); // 0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 20

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

PROMISE API
A Promise is a proxy for a value not necessarily known when the promise
is created. It allows you to associate handlers with an asynchronous
action’s eventual success value or failure reason. This lets asynchronous
methods return values like synchronous methods: instead of
immediately returning the final value, the asynchronous method returns
a promise to supply the value at some point in the future.

A Promise is in one of these states:

pending
Initial state, neither fulfilled nor rejected.

fulfilled
The operation was completed successfully.

rejected
The operation failed.

A pending promise can either be fulfilled with a value or rejected with a
reason (error). When either of these options happens, the associated
handlers queued up by a promise’s then method are called. If the
promise has already been fulfilled or rejected when a corresponding
handler is attached, the handler will be called, so there is no race
condition between an asynchronous operation completing and its
handlers being attached.

let promise = new Promise((resolve, reject) =>
 ... resolve(data) // ...
 ... reject(reason) // ...
});
// ...
promise
 .then(handleResolvedA, handleRejectedA)
 .then(handleResolvedB, handleRejectedB)
 .then(handleResolvedC, handleRejectedC)
 .catch(handleRejectedD);

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 21

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

CHAINED PROMISES

Promise

.then(onFulfill, …)

.then(…, onReject)

.catch(onReject)

pending fulfill

reject

settled

Promise

return

return

async ac�ons

error handling

.then()
.catch()

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 22

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

PROMISE METHODS

STATIC METHODS
Promise.all(iterable)

Promise.allSettled(iterable)

Promise.any(iterable)

Promise.race(iterable)

Promise.reject(reason)

Promise.resolve(value)

INSTANCE METHODS
catch()

then()

finally()

Promise.all([
 new Promise(resolve => setTimeout(() => resolve(2), 3000)), // 2
 new Promise(resolve => setTimeout(() => resolve(4), 2000)), // 4
 new Promise(resolve => setTimeout(() => resolve(6), 1000)) // 6
]).then(console.log); // 2,4,6 when promises are ready: each promise contributes an array memb

1
2
3
4
5

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 23

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

SEQUELIZE: PROMISE-BASED ORM
Sequelize is a promise-based Node.js ORM tool for Postgres, MySQL, MariaDB, SQLite and Microso� SQL Server.

It features solid transaction support, relations, eager and lazy loading, read replication and more.

Product.findAll({ where })
 .catch((reason) => console.error(reason))
 .then((products) => {
 // ... use products
 });

1
2
3
4
5

Product.findOne({ where })
 .catch((reason) => console.error(reason))
 .then((product) => {
 // ... use the product
 });

1
2
3
4
5

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 24

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

CURRYING
Currying is an advanced technique of working with functions. Currying is the technique of converting a function that takes multiple arguments into
a sequence of functions that each takes a single argument. Currying is a transformation of functions that translates a function from callable as
f(a, b, c) into callable as f(a)(b)(c) .

function curry(fn) {
 return function curried(...args) {
 if (args.length >= fn.length) {
 return fn.apply(this, args);
 } else {
 return function (...args2) {
 return curried.apply(this, args.concat(args2));
 }
 }
 };
}

1
2
3
4
5
6
7
8
9
10
11

function sum(a, b, c) {
 return a + b + c;
}
let currySum = curry(sum);
console.log(currySum(10, 20, 30));
console.log(currySum(10)(20, 30));
console.log(currySum(10)(20)(30));

1
2
3
4
5
6
7

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 25

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

SUPPLANT
Supplant does variable substitution on the string. It scans through the string looking for expressions enclosed in {{ }} braces. If an expression is
found, use it as a key on the object, and if the key has a string value or number value, it is substituted for the bracket expression and it repeats. This
is useful for automatically fixing URLs or for templating HTML.

Based on: Remedial JavaScript

function supplant(str, object) {
 return str.replace(
 /\{\{[]*([^{}]*)[]*\}\}/g,
 function (a, b) {
 let r = object[b];
 return typeof r === 'string' ||
 typeof r === 'number' ? r : a
 }
);
}

1
2
3
4
5
6
7
8
9
10

const template = 'The distance from {{ from }} to {{ to }} is {{ distance }} km.'
const values = { from: 'A', to: 'B', distance: 10 };

console.log(supplant(template, values));
// The distance from A to B is 10 km.

1
2
3
4
5

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 26

http://www.crockford.com/javascript/remedial.html
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

This slide is intentionally le� blank.
Return to Course Page

Node JS II - EECS 4413Node JS II - EECS 4413 12 November 202112 November 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 27

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/slides/06-nodejs-2?print-pdf
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

