
SERVER-SIDE

NODE JS
CROSS-CUTTING THEMES
JAVASCRIPT - THE GOOD PARTS
NODE JS

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 2

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

VERSION

v1.2 7 November 2021

v1.1 4 November 2021

v1.0 26 October 2021

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 3

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

ACKNOWLEDGMENTS

THANKS TO:
Hamzeh Roumani, who has shaped EECS-4413 into a leading
hands-on CS course at EECS
and who generously shared all of his course
materials and, more importantly, his teaching
philosophy with me;
Parke Godfrey, my long-suffering Master’s supervisor and mentor; and
Suprakash Datta for giving me this opportunity to teach this course.

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 4

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

PRINTABLE VERSION OF THE TALK

Download PDF

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 5

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/files/slides/05-nodejs.pdf
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

CROSS-CUTTING THEMES
Security
Modularity
Versatility

Interoperability
Scalability
Telemetry

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 7

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

SECURITY

NEVER TRUST THE CLIENT
Always assume all input or data coming from the client might be sent
maliciously, because you can’t control it. This means authentication and
authorization must be checked and enforced server-side. All input must be
validated. Never trust the user; there is nothing on the client side that can
prevent them from entering dangerous, unexpected input. Always validate
input
and perform server-side checks on everything. Assume a malicious
actor can
tampered with the client and its implementation (not just
webpages but mobile
applications as well). Never provide direct access to
the databases.

An API lets us control what features, capabilities and
resources the clients
have access to and helps us
minimize the attack surface a malicious actor
can
exploit against our systems.

Client ServerNetwork

Database

Unauthorized Access

Confidentiality Protection against disclosure
 Encrypt: link level or end-to-end
 Authentication: Passwords, Accounts, OAuth

Integrity Protection against alteration
 SQL Injection: Always sanitize incoming parameters and use prepared queries

Availability Protection against interference
 Network based Measures: IP filtering, black and white lists, DoS, DDoS, …

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 8

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

MODULARITY + VERSATILITY
COMPONENTS SHOULD BE LOOSELY-
COUPLED WITH MULTIPLE CLIENT APPS
SHARING THE SAME BACKEND

With an API, the server and clients can evolve independently.
Allows our system to be platform- and technology-agnostic.

GET /products

PO S T /products

PUT /products

Server
(Tomcat)

Website

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 9

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

MODULARITY + VERSATILITY
COMPONENTS SHOULD BE LOOSELY-
COUPLED WITH MULTIPLE CLIENT APPS
SHARING THE SAME BACKEND

With an API, the server and clients can evolve independently.
Allows our system to be platform- and technology-agnostic.

GET /products

PO S T /products

PUT /products

Server
(Tomcat)

Website

POS

Mobile App

Multiple different client
implementations can use the same API:

Web applications
Mobile apps

Desktop apps
Point-of-sales terminals

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 9

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

MODULARITY + VERSATILITY
COMPONENTS SHOULD BE LOOSELY-
COUPLED WITH MULTIPLE CLIENT APPS
SHARING THE SAME BACKEND

With an API, the server and clients can evolve independently.
Allows our system to be platform- and technology-agnostic.

GET /products

PO S T /products

PUT /products

Server
(Tomcat)

Website

POS

Mobile App

Multiple different client
implementations can use the same API:

Web applications
Mobile apps

Desktop apps
Point-of-sales terminals

All apps share the
same API, so data is synchronized and consistent.
If multiple apps are
implemented in the same language, they can
share the same code for
accessing the API.
We can publish our APIs
so that 3rd-parties can use them, build 3rd-
party apps or extend our APIs
as 3rd-party web services.

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 9

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

INTEROPERABILITY
COMPONENTS SHOULD BE LOOSELY-
COUPLED AND REPLACEABLE WITHOUT
BREAKING OTHER COMPONENTS

With an API, the server and clients can evolve independently.
Allows our system to be platform- and technology-agnostic.
That means we can reimplement the server in any programming
language we want.
As long as the new implementation replicates all of the existing
features and
API remains the same as before, the clients should not
notice any difference.
That gives us, implementers the flexibility to choose the technology
that best
suits our application’s requirements as oppose to being
locked into a certain
technology or programming language; the
democraticization of technology.

GET /products

POST /products

PUT /products

Server
(NodeJS)

Website

POS

Mobile App

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 10

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

SCALABILITY
Scalability: the property of the systems of
remaining efficient where there is a
significant
increase in the number of users and resources.

Controlling the cost of physical resources
Controlling the performance loss
Preventing software resources from running out
Avoiding performance bottlenecks

TECHNIQUES
Multithreading
Throttling
Thread Pooling
Scale through containers (e.g. Docker, Kubernetes)
Scale through boxes (pods and nodes) or VMs
Load Balancing
Auto Scaling

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 11

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

TELEMETRY
System Logs
Performance Timing
Metrics

Analytics
Data Mining
Machine Learning

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 12

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

FAILURE HANDLING
If a part of the system fails, the system should still functions
Detecting failure:

Some failures can be detected: for example a checksum can detect corrupted data in a message, a server not responding

Masking failures: when a failure is detected it can be hidden or made less severe
Messages can be retransmitted or corrected, a server is restarted

Tolerating failure: if a browser cannot contact a server, it does not try forever; it gives up and inform the user
Recovery from failures: the software should be able to “roll-back” to a stable and know state
Redundancy: services can tolerate failures by using redundant components; most web applications run on clusters
Unsolved problems: denial of service

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 13

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

JAVASCRIPT
THE GOOD PARTS

Source:
and presented by
Douglas Crockford in 2007 and 2011.The JavaScript Trilogy Crockford on JavaScript

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 15

https://www.youtube.com/playlist?list=PL5586336C26BDB324
https://www.youtube.com/playlist?list=PL7664379246A246CB
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

JAVASCRIPT
During these formative years of the Web, web pages could only be
static, lacking
the capability for dynamic behavior after the page
was loaded in the browser. In
1995, Netscape decided to add a
scripting language to Netscape Navigator. They
pursued two
routes to achieve this: collaborating with Sun Microsystems to
embed
the Java programming language, while also hiring Brendan
Eich to embed a
scripting language in the browser.

Brendan Eich to devise a scripting language, with syntax similar to
Java, but
borrowed a lot of ideas from Scheme for lambda
functions and Self for dynamic
typing and prototypal object-
oriented inheritance. Although the new language and
its
interpreter implementation were called LiveScript when first
shipped as part
of a Netscape Navigator beta in September 1995,
the name was changed to
JavaScript for the official release in
December 1995.

Microsoft reverse-engineered Netscape Navigator’s JavaScript
interpreter to
create its own, called JScript. In November 1996,
Netscape submitted JavaScript
to Ecma International, as the
starting point for a standard specification that
all browser vendors
could conform to. This led to the official release of the
first
ECMAScript language specification in June 1997.

Source:

LiveScript
(renamed JavaScript)

Scheme SelfJava
Syntax Lambdas

• Objects
• Prototypal inheritances
• Dynamically-typed

JAVASCRIPT RESOURCES:

 (2007)

 (2011)

JavaScript - Wikipedia

JavaScript - Mozilla Developer Network

ECMAScript 2021 (ECMA-402), June 2021

The JavaScript Trilogy

Crockford on JavaScript

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 16

https://en.wikipedia.org/wiki/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.ecma-international.org/publications-and-standards/standards/ecma-402/
https://www.youtube.com/playlist?list=PL5586336C26BDB324
https://www.youtube.com/playlist?list=PL7664379246A246CB
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

JAVASCRIPT’S KEY IDEAS
Load and go delivery
Loose Typing
Objects as general containers
Prototypal inheritance
Lambda
Linkage through global variables

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 17

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

JAVASCRIPT AND JAVA
JavaScript and Java are similar in some ways but fundamentally
different in some
others. The JavaScript language resembles
Java but does not have Java’s static
typing and strong type
checking. JavaScript follows most Java expression syntax,
naming conventions and basic control-flow constructs which
was the reason why it
was renamed from LiveScript to
JavaScript.

JavaScript is a very free-form language compared to Java. You
do not have to
declare all variables, classes, and methods. You
do not have to be concerned
with whether methods are public,
private, or protected, and you do not have to
implement
interfaces. Variables, parameters, and function return types are
not
explicitly typed.

Source:

JAVASCRIPT JAVA
Object-oriented. No distinction between types of
objects.Inheritance is through the prototype
mechanism, and properties and methods canbe
added to any object dynamically.

Class-based. Objects are divided into classes and
instanceswith all inheritance through the class
hierarchy. Classes and instances cannothave
properties or methods added dynamically.

Variable data types are not declared (dynamic
typing, loosely typed).

Variable data types must be declared (static typing,
strongly typed).

Cannot automatically write to hard disk. Can automatically write to hard disk.

JavaScript Guide - Mozilla Developer Network

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 18

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction#javascript_and_java
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

JAVASCRIPT TYPES
PRIMITIVE TYPES

string

number

boolean

COMPLEX TYPES
object

function

EMPTY TYPES
null

undefined

BUILT-IN OBJECTS
Object

Function

Array

Date

String

Number

Boolean

Symbol

RegExp

Error

Promise

Map

WeakMap

STATIC OBJECTS
Math

JSON

For the full list of standard built-in
objects, refer to
 .here

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 19

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

JAVASCRIPT GLOBALS
VALUE PROPERTIES
These global properties return a simple value. They
have no properties or methods.

Infinity

NaN

undefined

globalThis

FUNCTION PROPERTIES
These global functions—functions which are called
globally, rather than on an object—directly return
their results to the caller.

eval()

isFinite()

isNaN()

parseFloat()

parseInt()

encodeURI()

encodeURIComponent()

decodeURI()

decodeURIComponent()

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 20

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

JAVASCRIPT - typeof
You can use the typeof operator to find the data type of a JavaScript variable.

PLEASE OBSERVE:

NaN is number .

An Array is object .

A Date is object .

null is object .

An undefined variable is undefined .

A variable that has not been assigned a value is also undefined .

typeof "John" // Returns "string
typeof 3.14 // Returns "number
typeof NaN // Returns "number
typeof false // Returns "boolea
typeof [1,2,3,4] // Returns "object
typeof {name:'John', age:34} // Returns "object
typeof new Date() // Returns "object
typeof function () {} // Returns "functi
typeof myCar // Returns "undefi
typeof null // Returns "object

1
2
3
4
5
6
7
8
9
10

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 21

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

NODE JS
SERVER-SIDE JAVASCRIPT

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 23

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

ABOUT NODE.JS
Node.js is an asynchronous event-driven JavaScript runtime, designed to build
scalable network applications.
It is an open-source, cross-platform, back-end
runtime environment that runs on the V8 engine and executes
JavaScript code
outside a web browser. It enables developers to use JavaScript to write command
line tools
and server-side scripts. Developed in 2009 by Ryan Dahl.

Node.js is similar in design to, and influenced by, systems like Ruby’s Event
Machine and Python’s Twisted.
Node.js takes the event model a bit further. It
presents an event loop as a runtime construct instead of as a
library. In other
systems, there is always a blocking call to start the event-loop.

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 24

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

NODE JS: THE SYSTEM
APPLICATION

JAVASCRIPT

V8
(JAVASCRIPT ENGINE)

NODE.JS
BINDINGS
(NODE API)

OS
OPERATION

LIBUV
(ASYNCHRONOUS I/O)

EVENT
QUEUE

PROCESS

NETWORK

FILESYSTEM

WORKER
THREADSBLOCKING

OPERATION

EXECUTE
CALLBACK

EVENT
LOOP

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 25

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

NPM PACKAGE MANAGER
npm is a package manager for the JavaScript
programming language maintained by npm, Inc.

npm is the default package manager for the JavaScript
runtime environment
Node.js. It consists of a command
line client, also called npm , and an online
database of
public and paid-for private packages, called the npm
registry. The
registry is accessed via the client, and the
available packages can be browsed
and searched via the
npm website. The package manager and the registry are
managed by npm, Inc.

npm stands for Node Package Manager. It was released
back in 2010, beginning a
new era in web development.
Until then, the project dependencies were downloaded
and managed manually. npm was the magic wand that
pushed the Web to the next
level.

npm actually involves three things:

a website for managing various aspects
of your npm experience
a registry for accessing an extensive
public database of JavaScript packages
a command-line interface (CLI) for
interacting with npm via the terminal

Yarn stands for Yet Another Resource Negotiator. The
Yarn package
manager is an alternative to npm, released
by Facebook in October 2016. The
original goal of Yarn
was to deal with npm drawbacks, such as performance
and
security issues. Yarn was positioned as a safe, fast,
and reliable JavaScript
dependency management tool.
But the npm team learned their lesson and rapidly
filled
the npm gaps by implementing the missing features.

package.json

$ npm init

$ npm install -s express ...

{

 "name": "node-project-example",

 "version": "1.0.0",

 "main": "index.js",

 "dependencies": {

 "express": "^4.17.1",

 "express-session": "^1.17.2",

 "lodash": "^4.17.21",

 "sequelize": "^6.7.0",

 "sequelize-cli": "^5.0.0",
 "sqlite3": "^4.2.0"

 }

}

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 26

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

TCP CLIENT TCP SERVER
const { createConnection } = require('net');

const host = process.argv[2];
const port = process.argv[3];
const client = createConnection(port, host);

let response = [];
let connection;

client.on('error', () => console.log(`Error when connecting ${connection}.`));
client.on('close', () => console.log(`Disconnected from ${connection}`));
client.on('connect', () => {
 connection = `${client.remoteAddress}:${client.remotePort}`;
 console.log(`Connected to ${connection}`);
 client.write('...'); // send request
 client.end();
});
client.on('data', (chunk) => response.push(chunk));
client.on('end', () => {
 console.log(response.join());
});

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

const { createServer } = require('net');

const port = process.argv[2] || 4413;
const server = createServer();

server.listen(port, () => {
 const address = `${server.address().address}:${server.address().port}`;
 console.log(`Server Listening at: ${address}`);
});

server.on('connection', (socket) => {
 const client = `${socket.remoteAddress}:${socket.remotePort}`;
 console.log(`Connection from ${client}`);
 socket.on('error', (err) => console.log(`Error: ${err}`));
 socket.on('end', () => console.log(`Closing connection with ${client}`));
 socket.on('data', function (request) {
 socket.write('...'); // send response
 socket.end();
 });
});

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 27

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

HTTP CLIENT HTTP SERVER
const { get } = require('http'); // require('https')

const request = get(process.argv[2]); // send GET request

request.on('error', (e) => console.error(`Connection Error: ${e.message}`));
request.on('response', (res) => {
 const { statusCode } = res;
 const contentType = res.headers['content-type'];
 // error-checking ...
 let response = [];
 res.setEncoding('utf8');
 res.on('data', (chunk) => response.push(chunk));
 res.on('end', () => {
 let data = response.join();
 // use the response data ...
 });
});

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

const { createServer } = require('http'); // require('https')

const port = process.argv[2] || 4413;
const server = createServer();

server.listen(port, () => {
 const address = `${server.address().address}:${server.address().port}`;
 console.log(`Server Listening at: ${address}`);
});

server.on('request', (req, res) => {
 console.log(`Request Received`);

 res.writeHead(200, { 'Content-Type': 'application/json' });
 res.write('...'); // send response
 res.end();
});

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 28

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

DATABASE ACCESS IN NODE.JS

Reference: https://github.com/mapbox/node-sqlite3/wiki/API

const os = require('os');
const path = require('path');
const sqlite3 = require('sqlite3');

const dbfile = '4413/pkg/sqlite/Models_R_US.db';
const dbpath = path.join(os.homedir(), ...dbfile.split('/'));
const db = new (sqlite3.verbose()).Database(dbpath);

module.exports = {
 getProductsByVendor(venId, success, failure) {
 db.all('SELECT * FROM Product WHERE venId = ?', [venId], (err, rows) => {
 if (err == null) {
 success(rows);
 } else {
 failure(err);
 }
 });
 }
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 29

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

This slide is intentionally left blank.
Return to or .Course Page Part II

Node JS - EECS 4413Node JS - EECS 4413 28 October 202128 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 30

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/slides/05-nodejs?print-pdf
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/slides/06-nodejs-2
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

