
SERVER-SIDE

WEB SERVICES II
THE TOMCAT SERVER
RESTFUL APIS
OTHER WEB APIS

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 2

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

VERSION

v1.0 09 October 2021

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 3

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

ACKNOWLEDGMENTS

THANKS TO:
Hamzeh Roumani, who has shaped EECS-4413 into a leading
hands-on CS course at EECS
and who generously shared all of his course
materials and, more importantly, his teaching
philosophy with me;
Parke Godfrey, my long-suffering Master’s supervisor and mentor; and
Suprakash Datta for giving me this opportunity to teach this course.

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 4

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

PRINTABLE VERSION OF THE TALK

Download PDF

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 5

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/files/slides/04-webservices-2.pdf
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

THE TOMCAT SERVER

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 7

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

TOMCAT

Web Server

The Controller

CATALINA

Sta�c Files

The Model

Plain-old Java
Objects

Persistence & Threading
app, session, request, etc.

The View

JASPER

Clients
Network

Connector

COYOTE

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 8

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

FIRST SERVLET
MyFirstServlet extends HttpServlet . This is mandatory

because all servlets
must be either a generic servlet that extends
javax.servlet.GenericServlet or
an HTTP servlet that

extends javax.servlet.http.HttpServlet .

Overriding doGet() and doPost() methods. These methods
are defined in
 HttpServlet class. Whenever a GET or POST
request come, it is mapped to it’s
respective method.

HTTP GET request to this servlet, then doGet() method is
called. There are
some other useful methods as well which you can
override to control the
application in runtime (e.g.:
getServletInfo()).

HttpServletRequest and HttpServletResponse are default
parameters to all
 doXXX() methods. We will learn more about
these objects in later section.

You can use @WebServlet annotation to automatically register
your servlet
into the runtime, specifying the servlet’s name and
URL patterns that the
runtime will match for it.

Source: (December 2020).Complete Java Servlets Tutorial

package services;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

@WebServlet(name = "MyFirstServlet", urlPatterns = {"/first"})
public class MyFirstServlet extends HttpServlet {
 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 try (PrintStream out = new PrintStream(response.getOutputStream(), true)) {
 // Write some content
 out.println("<html>");
 out.println("<head>");
 out.println("<title>MyFirstServlet</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h2>Servlet MyFirstServlet at " + request.getContextPath() + "</h2>"
 out.println("</body>");
 out.println("</html>");
 }
 }

 @Override
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 // handle POST request
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 9

https://howtodoinjava.com/java/servlets/complete-java-servlets-tutorial/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

@WebServlet()
public class LifecycleServlet extends HttpServlet {
 @Override
 protected void init(ServletConfig config) throws ServletException {
 // custom initialization code
 }

 @Override
 protected void service(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 switch (request.getMethod()) {
 case "GET": doGet(request, response); break;
 case "HEAD": doHead(request, response); break;
 case "POST": doPost(request, response); break;
 case "PUT": doPut(request, response); break;
 case "DELETE": doDelete(request, response); break;
 case "OPTIONS": doOptions(request, response); break;
 case "TRACE": doTrace(request, response); break;
 default:
 response.sendError(HttpServletResponse.SC_NOT_IMPLEMENTED);
 }
 }

 @Override
 protected void destroy() {
 // custom destruction code
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

SERVLET LIFE CYCLE METHODS
Whenever in your application, a servlet is loaded and used; there occurs a
series of events, during the
initialization and destruction of that servlet.
These are called life cycle events (or methods) of the
servlet. Three methods
are central to the life cycle of a servlet. These are init() , service() , and

destroy() . They are implemented by every servlet and are invoked at specific
times by the
runtime.

Source: (December 2020).Complete Java Servlets Tutorial

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 10

https://howtodoinjava.com/java/servlets/complete-java-servlets-tutorial/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

 protected void init(ServletConfig config) throws ServletException {
 // custom initialization code
 }

@WebServlet()1
public class LifecycleServlet extends HttpServlet {2
 @Override3

4
5
6

 7
 @Override8
 protected void service(HttpServletRequest request,9
 HttpServletResponse response)10
 throws ServletException, IOException {11
 switch (request.getMethod()) {12
 case "GET": doGet(request, response); break;13
 case "HEAD": doHead(request, response); break;14
 case "POST": doPost(request, response); break;15
 case "PUT": doPut(request, response); break;16
 case "DELETE": doDelete(request, response); break;17
 case "OPTIONS": doOptions(request, response); break;18
 case "TRACE": doTrace(request, response); break;19
 default:20
 response.sendError(HttpServletResponse.SC_NOT_IMPLEMENTED);21
 }22
 }23
 24
 @Override25
 protected void destroy() {26
 // custom destruction code27
 }28
}29

SERVLET LIFE CYCLE METHODS
Whenever in your application, a servlet is loaded and used; there occurs a
series of events, during the
initialization and destruction of that servlet.
These are called life cycle events (or methods) of the
servlet. Three methods
are central to the life cycle of a servlet. These are init() , service() , and

destroy() . They are implemented by every servlet and are invoked at specific
times by the
runtime.

Source: (December 2020).

1. During initialization
stage of the servlet life cycle, the web container initializes the servlet
instance by calling the init() method, passing an object implementing the

javax.servlet.ServletConfig interface. This configuration object allows
the servlet to
access name-value initialization parameters. This is called
only once in lifetime of that servlet
instance.

Complete Java Servlets Tutorial

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 10

https://howtodoinjava.com/java/servlets/complete-java-servlets-tutorial/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

 protected void service(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 switch (request.getMethod()) {
 case "GET": doGet(request, response); break;
 case "HEAD": doHead(request, response); break;
 case "POST": doPost(request, response); break;
 case "PUT": doPut(request, response); break;
 case "DELETE": doDelete(request, response); break;
 case "OPTIONS": doOptions(request, response); break;
 case "TRACE": doTrace(request, response); break;
 default:
 response.sendError(HttpServletResponse.SC_NOT_IMPLEMENTED);
 }
 }

@WebServlet()1
public class LifecycleServlet extends HttpServlet {2
 @Override3
 protected void init(ServletConfig config) throws ServletException {4
 // custom initialization code5
 }6
 7
 @Override8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

 24
 @Override25
 protected void destroy() {26
 // custom destruction code27
 }28
}29

SERVLET LIFE CYCLE METHODS
Whenever in your application, a servlet is loaded and used; there occurs a
series of events, during the
initialization and destruction of that servlet.
These are called life cycle events (or methods) of the
servlet. Three methods
are central to the life cycle of a servlet. These are init() , service() , and

destroy() . They are implemented by every servlet and are invoked at specific
times by the
runtime.

Source: (December 2020).

1. During initialization
stage of the servlet life cycle, the web container initializes the servlet
instance by calling the init() method, passing an object implementing the

javax.servlet.ServletConfig interface. This configuration object allows
the servlet to
access name-value initialization parameters. This is called
only once in lifetime of that servlet
instance.

2. After initialization, the
servlet instance can service client requests. The web container calls the
service() method of the servlet for every request. The service() method
determines

the kind of request being made and dispatches it to an
appropriate method to handle the
request.

Complete Java Servlets Tutorial

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 10

https://howtodoinjava.com/java/servlets/complete-java-servlets-tutorial/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

 protected void destroy() {
 // custom destruction code
 }

@WebServlet()1
public class LifecycleServlet extends HttpServlet {2
 @Override3
 protected void init(ServletConfig config) throws ServletException {4
 // custom initialization code5
 }6
 7
 @Override8
 protected void service(HttpServletRequest request,9
 HttpServletResponse response)10
 throws ServletException, IOException {11
 switch (request.getMethod()) {12
 case "GET": doGet(request, response); break;13
 case "HEAD": doHead(request, response); break;14
 case "POST": doPost(request, response); break;15
 case "PUT": doPut(request, response); break;16
 case "DELETE": doDelete(request, response); break;17
 case "OPTIONS": doOptions(request, response); break;18
 case "TRACE": doTrace(request, response); break;19
 default:20
 response.sendError(HttpServletResponse.SC_NOT_IMPLEMENTED);21
 }22
 }23
 24
 @Override25

26
27
28

}29

SERVLET LIFE CYCLE METHODS
Whenever in your application, a servlet is loaded and used; there occurs a
series of events, during the
initialization and destruction of that servlet.
These are called life cycle events (or methods) of the
servlet. Three methods
are central to the life cycle of a servlet. These are init() , service() , and

destroy() . They are implemented by every servlet and are invoked at specific
times by the
runtime.

Source: (December 2020).

1. During initialization
stage of the servlet life cycle, the web container initializes the servlet
instance by calling the init() method, passing an object implementing the

javax.servlet.ServletConfig interface. This configuration object allows
the servlet to
access name-value initialization parameters. This is called
only once in lifetime of that servlet
instance.

2. After initialization, the
servlet instance can service client requests. The web container calls the
service() method of the servlet for every request. The service() method
determines

the kind of request being made and dispatches it to an
appropriate method to handle the
request.

3. Finally, the web
container calls the destroy() method that takes the servlet out of
service.
You should call this method if you want to close or destroy some
filesystem or network
resources before the servlet goes out of scope. The
 destroy() method, like init() , is
called only once in the lifecycle of a
servlet.

Complete Java Servlets Tutorial

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 10

https://howtodoinjava.com/java/servlets/complete-java-servlets-tutorial/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

@WebServlet()
public class ProductServlet extends HttpServlet {
 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/plain");
 // ...
 String query = request.getParameter("query");
 String name = request.getParameter("name");
 // ...
 String agent = request.getHeader("User-Agent");
 Date since = new Date(request.getDateHeader("If-Modified-Since"));
 // ...
 if (...) {
 response.sendRedirect("/anotherURL");
 return;
 }
 // ...
 try (PrintStream out = new PrintStream(response.getOutputStream(), true)) {
 if (...) {
 // ...
 response.addHeader("Custom-Header", ...);
 response.addDateHeader("Date", date);
 out.println(output);
 } else {
 response.setStatus(HttpServletResponse.SC_BAD_REQUEST);
 }
 }
 }

 @Override
 protected void doPut(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("application/json");
 try (Scanner in = new Scanner(request.getInputStream())) {
 StringBuffer sb = new StringBuffer();
 while (in.hasNextLine()) {
 sb.append(in.nextLine());
 }
 // ...
 }
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

HANDLING SERVLET
REQUESTS AND RESPONSES
Servlets make it easy to create web applications that adhere to a request and
response life
cycle. They have the ability to provide HTTP responses and also
process business logic
within the same body of code. The ability to process
business logic makes servlets much
more powerful than standard HTML code.

Source: (December 2020).Complete Java Servlets Tutorial

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 11

https://howtodoinjava.com/java/servlets/complete-java-servlets-tutorial/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

 String query = request.getParameter("query");
 String name = request.getParameter("name");

@WebServlet()1
public class ProductServlet extends HttpServlet {2
 @Override3
 protected void doGet(HttpServletRequest request, HttpServletResponse response)4
 throws ServletException, IOException {5
 response.setContentType("text/plain");6
 // ...7

8
9

 // ...10
 String agent = request.getHeader("User-Agent");11
 Date since = new Date(request.getDateHeader("If-Modified-Since"));12
 // ...13
 if (...) {14
 response.sendRedirect("/anotherURL");15
 return;16
 }17
 // ...18
 try (PrintStream out = new PrintStream(response.getOutputStream(), true)) {19
 if (...) {20
 // ...21
 response.addHeader("Custom-Header", ...);22
 response.addDateHeader("Date", date);23
 out.println(output);24
 } else {25
 response.setStatus(HttpServletResponse.SC_BAD_REQUEST);26
 }27
 }28
 }29
 30
 @Override31
 protected void doPut(HttpServletRequest request, HttpServletResponse response)32
 throws ServletException, IOException {33
 response.setContentType("application/json");34
 try (Scanner in = new Scanner(request.getInputStream())) {35
 StringBuffer sb = new StringBuffer();36
 while (in.hasNextLine()) {37
 sb.append(in.nextLine());38
 }39
 // ...40
 }41
 }42
}43

HANDLING SERVLET
REQUESTS AND RESPONSES
Servlets make it easy to create web applications that adhere to a request and
response life
cycle. They have the ability to provide HTTP responses and also
process business logic
within the same body of code. The ability to process
business logic makes servlets much
more powerful than standard HTML code.

Source: (December 2020).

Obtaining the request parameters.

Complete Java Servlets Tutorial

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 11

https://howtodoinjava.com/java/servlets/complete-java-servlets-tutorial/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

 try (Scanner in = new Scanner(request.getInputStream())) {
 StringBuffer sb = new StringBuffer();
 while (in.hasNextLine()) {
 sb.append(in.nextLine());
 }

@WebServlet()1
public class ProductServlet extends HttpServlet {2
 @Override3
 protected void doGet(HttpServletRequest request, HttpServletResponse response)4
 throws ServletException, IOException {5
 response.setContentType("text/plain");6
 // ...7
 String query = request.getParameter("query");8
 String name = request.getParameter("name");9
 // ...10
 String agent = request.getHeader("User-Agent");11
 Date since = new Date(request.getDateHeader("If-Modified-Since"));12
 // ...13
 if (...) {14
 response.sendRedirect("/anotherURL");15
 return;16
 }17
 // ...18
 try (PrintStream out = new PrintStream(response.getOutputStream(), true)) {19
 if (...) {20
 // ...21
 response.addHeader("Custom-Header", ...);22
 response.addDateHeader("Date", date);23
 out.println(output);24
 } else {25
 response.setStatus(HttpServletResponse.SC_BAD_REQUEST);26
 }27
 }28
 }29
 30
 @Override31
 protected void doPut(HttpServletRequest request, HttpServletResponse response)32
 throws ServletException, IOException {33
 response.setContentType("application/json");34

35
36
37
38
39

 // ...40
 }41
 }42
}43

HANDLING SERVLET
REQUESTS AND RESPONSES
Servlets make it easy to create web applications that adhere to a request and
response life
cycle. They have the ability to provide HTTP responses and also
process business logic
within the same body of code. The ability to process
business logic makes servlets much
more powerful than standard HTML code.

Source: (December 2020).

Obtaining the request parameters.

Reading in the HTTP request body.

Complete Java Servlets Tutorial

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 11

https://howtodoinjava.com/java/servlets/complete-java-servlets-tutorial/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

 String agent = request.getHeader("User-Agent");
 Date since = new Date(request.getDateHeader("If-Modified-Since"));

@WebServlet()1
public class ProductServlet extends HttpServlet {2
 @Override3
 protected void doGet(HttpServletRequest request, HttpServletResponse response)4
 throws ServletException, IOException {5
 response.setContentType("text/plain");6
 // ...7
 String query = request.getParameter("query");8
 String name = request.getParameter("name");9
 // ...10

11
12

 // ...13
 if (...) {14
 response.sendRedirect("/anotherURL");15
 return;16
 }17
 // ...18
 try (PrintStream out = new PrintStream(response.getOutputStream(), true)) {19
 if (...) {20
 // ...21
 response.addHeader("Custom-Header", ...);22
 response.addDateHeader("Date", date);23
 out.println(output);24
 } else {25
 response.setStatus(HttpServletResponse.SC_BAD_REQUEST);26
 }27
 }28
 }29
 30
 @Override31
 protected void doPut(HttpServletRequest request, HttpServletResponse response)32
 throws ServletException, IOException {33
 response.setContentType("application/json");34
 try (Scanner in = new Scanner(request.getInputStream())) {35
 StringBuffer sb = new StringBuffer();36
 while (in.hasNextLine()) {37
 sb.append(in.nextLine());38
 }39
 // ...40
 }41
 }42
}43

HANDLING SERVLET
REQUESTS AND RESPONSES
Servlets make it easy to create web applications that adhere to a request and
response life
cycle. They have the ability to provide HTTP responses and also
process business logic
within the same body of code. The ability to process
business logic makes servlets much
more powerful than standard HTML code.

Source: (December 2020).

Obtaining the request parameters.

Reading in the HTTP request body.

Obtaining the request headers.

Complete Java Servlets Tutorial

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 11

https://howtodoinjava.com/java/servlets/complete-java-servlets-tutorial/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

 try (PrintStream out = new PrintStream(response.getOutputStream(), true)) {

 out.println(output);

@WebServlet()1
public class ProductServlet extends HttpServlet {2
 @Override3
 protected void doGet(HttpServletRequest request, HttpServletResponse response)4
 throws ServletException, IOException {5
 response.setContentType("text/plain");6
 // ...7
 String query = request.getParameter("query");8
 String name = request.getParameter("name");9
 // ...10
 String agent = request.getHeader("User-Agent");11
 Date since = new Date(request.getDateHeader("If-Modified-Since"));12
 // ...13
 if (...) {14
 response.sendRedirect("/anotherURL");15
 return;16
 }17
 // ...18

19
 if (...) {20
 // ...21
 response.addHeader("Custom-Header", ...);22
 response.addDateHeader("Date", date);23

24
 } else {25
 response.setStatus(HttpServletResponse.SC_BAD_REQUEST);26
 }27
 }28
 }29
 30
 @Override31
 protected void doPut(HttpServletRequest request, HttpServletResponse response)32
 throws ServletException, IOException {33
 response.setContentType("application/json");34
 try (Scanner in = new Scanner(request.getInputStream())) {35
 StringBuffer sb = new StringBuffer();36
 while (in.hasNextLine()) {37
 sb.append(in.nextLine());38
 }39
 // ...40
 }41
 }42
}43

HANDLING SERVLET
REQUESTS AND RESPONSES
Servlets make it easy to create web applications that adhere to a request and
response life
cycle. They have the ability to provide HTTP responses and also
process business logic
within the same body of code. The ability to process
business logic makes servlets much
more powerful than standard HTML code.

Source: (December 2020).

Obtaining the request parameters.

Reading in the HTTP request body.

Obtaining the request headers.

Sending the body of the HTTP response.

Complete Java Servlets Tutorial

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 11

https://howtodoinjava.com/java/servlets/complete-java-servlets-tutorial/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

 response.setContentType("text/plain");

 response.setContentType("application/json");

@WebServlet()1
public class ProductServlet extends HttpServlet {2
 @Override3
 protected void doGet(HttpServletRequest request, HttpServletResponse response)4
 throws ServletException, IOException {5

6
 // ...7
 String query = request.getParameter("query");8
 String name = request.getParameter("name");9
 // ...10
 String agent = request.getHeader("User-Agent");11
 Date since = new Date(request.getDateHeader("If-Modified-Since"));12
 // ...13
 if (...) {14
 response.sendRedirect("/anotherURL");15
 return;16
 }17
 // ...18
 try (PrintStream out = new PrintStream(response.getOutputStream(), true)) {19
 if (...) {20
 // ...21
 response.addHeader("Custom-Header", ...);22
 response.addDateHeader("Date", date);23
 out.println(output);24
 } else {25
 response.setStatus(HttpServletResponse.SC_BAD_REQUEST);26
 }27
 }28
 }29
 30
 @Override31
 protected void doPut(HttpServletRequest request, HttpServletResponse response)32
 throws ServletException, IOException {33

34
 try (Scanner in = new Scanner(request.getInputStream())) {35
 StringBuffer sb = new StringBuffer();36
 while (in.hasNextLine()) {37
 sb.append(in.nextLine());38
 }39
 // ...40
 }41
 }42
}43

HANDLING SERVLET
REQUESTS AND RESPONSES
Servlets make it easy to create web applications that adhere to a request and
response life
cycle. They have the ability to provide HTTP responses and also
process business logic
within the same body of code. The ability to process
business logic makes servlets much
more powerful than standard HTML code.

Source: (December 2020).

Obtaining the request parameters.

Reading in the HTTP request body.

Obtaining the request headers.

Sending the body of the HTTP response.

Setting the HTTP response content type.

Complete Java Servlets Tutorial

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 11

https://howtodoinjava.com/java/servlets/complete-java-servlets-tutorial/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

 response.setStatus(HttpServletResponse.SC_BAD_REQUEST);

@WebServlet()1
public class ProductServlet extends HttpServlet {2
 @Override3
 protected void doGet(HttpServletRequest request, HttpServletResponse response)4
 throws ServletException, IOException {5
 response.setContentType("text/plain");6
 // ...7
 String query = request.getParameter("query");8
 String name = request.getParameter("name");9
 // ...10
 String agent = request.getHeader("User-Agent");11
 Date since = new Date(request.getDateHeader("If-Modified-Since"));12
 // ...13
 if (...) {14
 response.sendRedirect("/anotherURL");15
 return;16
 }17
 // ...18
 try (PrintStream out = new PrintStream(response.getOutputStream(), true)) {19
 if (...) {20
 // ...21
 response.addHeader("Custom-Header", ...);22
 response.addDateHeader("Date", date);23
 out.println(output);24
 } else {25

26
 }27
 }28
 }29
 30
 @Override31
 protected void doPut(HttpServletRequest request, HttpServletResponse response)32
 throws ServletException, IOException {33
 response.setContentType("application/json");34
 try (Scanner in = new Scanner(request.getInputStream())) {35
 StringBuffer sb = new StringBuffer();36
 while (in.hasNextLine()) {37
 sb.append(in.nextLine());38
 }39
 // ...40
 }41
 }42
}43

HANDLING SERVLET
REQUESTS AND RESPONSES
Servlets make it easy to create web applications that adhere to a request and
response life
cycle. They have the ability to provide HTTP responses and also
process business logic
within the same body of code. The ability to process
business logic makes servlets much
more powerful than standard HTML code.

Source: (December 2020).

Obtaining the request parameters.

Reading in the HTTP request body.

Obtaining the request headers.

Sending the body of the HTTP response.

Setting the HTTP response content type.

Setting the HTTP response status code.

Complete Java Servlets Tutorial

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 11

https://howtodoinjava.com/java/servlets/complete-java-servlets-tutorial/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

 response.addHeader("Custom-Header", ...);
 response.addDateHeader("Date", date);

@WebServlet()1
public class ProductServlet extends HttpServlet {2
 @Override3
 protected void doGet(HttpServletRequest request, HttpServletResponse response)4
 throws ServletException, IOException {5
 response.setContentType("text/plain");6
 // ...7
 String query = request.getParameter("query");8
 String name = request.getParameter("name");9
 // ...10
 String agent = request.getHeader("User-Agent");11
 Date since = new Date(request.getDateHeader("If-Modified-Since"));12
 // ...13
 if (...) {14
 response.sendRedirect("/anotherURL");15
 return;16
 }17
 // ...18
 try (PrintStream out = new PrintStream(response.getOutputStream(), true)) {19
 if (...) {20
 // ...21

22
23

 out.println(output);24
 } else {25
 response.setStatus(HttpServletResponse.SC_BAD_REQUEST);26
 }27
 }28
 }29
 30
 @Override31
 protected void doPut(HttpServletRequest request, HttpServletResponse response)32
 throws ServletException, IOException {33
 response.setContentType("application/json");34
 try (Scanner in = new Scanner(request.getInputStream())) {35
 StringBuffer sb = new StringBuffer();36
 while (in.hasNextLine()) {37
 sb.append(in.nextLine());38
 }39
 // ...40
 }41
 }42
}43

HANDLING SERVLET
REQUESTS AND RESPONSES
Servlets make it easy to create web applications that adhere to a request and
response life
cycle. They have the ability to provide HTTP responses and also
process business logic
within the same body of code. The ability to process
business logic makes servlets much
more powerful than standard HTML code.

Source: (December 2020).

Obtaining the request parameters.

Reading in the HTTP request body.

Obtaining the request headers.

Sending the body of the HTTP response.

Setting the HTTP response content type.

Setting the HTTP response status code.

Addding HTTP response headers.

Complete Java Servlets Tutorial

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 11

https://howtodoinjava.com/java/servlets/complete-java-servlets-tutorial/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

 response.sendRedirect("/anotherURL");

@WebServlet()1
public class ProductServlet extends HttpServlet {2
 @Override3
 protected void doGet(HttpServletRequest request, HttpServletResponse response)4
 throws ServletException, IOException {5
 response.setContentType("text/plain");6
 // ...7
 String query = request.getParameter("query");8
 String name = request.getParameter("name");9
 // ...10
 String agent = request.getHeader("User-Agent");11
 Date since = new Date(request.getDateHeader("If-Modified-Since"));12
 // ...13
 if (...) {14

15
 return;16
 }17
 // ...18
 try (PrintStream out = new PrintStream(response.getOutputStream(), true)) {19
 if (...) {20
 // ...21
 response.addHeader("Custom-Header", ...);22
 response.addDateHeader("Date", date);23
 out.println(output);24
 } else {25
 response.setStatus(HttpServletResponse.SC_BAD_REQUEST);26
 }27
 }28
 }29
 30
 @Override31
 protected void doPut(HttpServletRequest request, HttpServletResponse response)32
 throws ServletException, IOException {33
 response.setContentType("application/json");34
 try (Scanner in = new Scanner(request.getInputStream())) {35
 StringBuffer sb = new StringBuffer();36
 while (in.hasNextLine()) {37
 sb.append(in.nextLine());38
 }39
 // ...40
 }41
 }42
}43

HANDLING SERVLET
REQUESTS AND RESPONSES
Servlets make it easy to create web applications that adhere to a request and
response life
cycle. They have the ability to provide HTTP responses and also
process business logic
within the same body of code. The ability to process
business logic makes servlets much
more powerful than standard HTML code.

Source: (December 2020).

Obtaining the request parameters.

Reading in the HTTP request body.

Obtaining the request headers.

Sending the body of the HTTP response.

Setting the HTTP response content type.

Setting the HTTP response status code.

Addding HTTP response headers.

Redirecting the client to a different URL.

Complete Java Servlets Tutorial

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 11

https://howtodoinjava.com/java/servlets/complete-java-servlets-tutorial/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

WRITING AND READING
COOKIES USING SERVLETS

ADDING AND SETTING
SESSIONS USING SERVLETS

To create a cookie, simply instantiate a new javax.servlet.http.Cookie object
and assign
a name and value to it. Once the cookie has been instantiated,
properties can be set that will
help to configure the cookie. IThe cookie’s
 setMaxAge() and setHttpOnly() methods can
be called to set the time of life
for the cookie and ensure that it will be guarded against client-
side scripting.

To create and retrieve a session, call the request.getSession(true) method to
obtain the

javax.servlet.http.HttpSession object. If it isn’t created yet,
create it otherwise return
the existing session. You can get and set as many as
session attributes as you like. Each attribute
has a unique name associated with
its assigned value. If unset, the getAttribute() method
returns null . The server
can invalidate the session at any time.

Cookie cookie = new Cookie("sessionId","123456789");

cookie.setHttpOnly(true);

cookie.setMaxAge(-30);

response.addCookie(cookie);

// ...

Cookie[] cookies = request.getCookies();

for(Cookie cookie : cookies) {

 // cookie.getName();

 // cookie.getValue();

}

HttpSession session = request.getSession(true);

String username = (String)session.getAttribute("username");

session.setAttribute("username", username);

session.removeAttribute('old_value');

session.invalidate();

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 12

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

<web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee

 http://xmlns.jcp.org/xml/ns/javaee/web-app_4_0
 version="4.0">

 <context-param>

 <param-name>teamFont</param-name>

 <param-value>Helvetica</param-value>

 </context-param>

 ...

 <servlet>

 <servlet-name>redteam</servlet-name>

 <servlet-class>mysite.server.TeamServlet</servlet-class>
 <init-param>

 <param-name>teamColor</param-name>

 <param-value>red</param-value>

 </init-param>

 ...

 </servlet>

 ...

 <servlet-mapping>

 <servlet-name>redteam</servlet-name>

 <url-pattern>/red/*</url-pattern>

 </servlet-mapping>

 ...

</web-app>

THE web.xml DEPLOYMENT
DESCRIPTORS FILE
The web.xml file is a standard configuration file used to specify details and
configuration
regarding your server and its servlets. It allows your webapp to
be portable, i.e. moved to a
different server with different configurations or a
different file path and still work with only
minor changes to the configuration
file. The webapp shouldn’t need to be re-compiled or edited
to run in a
different environment.

Java web applications use a deployment descriptor file to determine how URLs map
to servlets,
which URLs require authentication, and other information. This file
is named web.xml , and
resides in the app’s WEB-INF/ directory. web.xml is
part of the servlet standard for web
applications.

A web application’s deployment descriptor describes the classes, resources and
configuration of
the application and how the web server uses them to serve web
requests. When the web server
receives a request for the application, it uses
the deployment descriptor to map the URL of the
request to the code that ought
to handle the request.

Source: and
 .Configuring the web.xml Deployment Descriptor A web.xml Deployment Descriptor Elements

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 13

https://cloud.google.com/appengine/docs/flexible/java/configuring-the-web-xml-deployment-descriptor
https://docs.oracle.com/cd/E12839_01/web.1111/e13712/web_xml.htm
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

The servlet can access its initialization parameters by getting its servlet
configuration
using its own getServletConfig() method, then calling the

getInitParameter() method on the configuration object using the name of the
parameter as an argument.

For shared initialization parameters, they can be retrieved by calling the

getServletContext() method, then calling the getInitParameter() method

on
the context object using the name of the parameter as an argument.

@WebServlet()

public class TeamServlet extends HttpServlet {

 protected void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {
 // ...

 getServletContext().getInitParameter("teamFont"); // "Helvetica
 getServletConfig().getInitParameter("teamColor"); // "red"

 getServletConfig().getInitParameter("bgColor"); // "#CC0000"

 // ...

 }

}

THE web.xml DEPLOYMENT
DESCRIPTORS FILE
The web.xml file is a standard configuration file used to specify details and
configuration
regarding your server and its servlets. It allows your webapp to
be portable, i.e. moved to a
different server with different configurations or a
different file path and still work with only
minor changes to the configuration
file. The webapp shouldn’t need to be re-compiled or edited
to run in a
different environment.

Java web applications use a deployment descriptor file to determine how URLs map
to servlets,
which URLs require authentication, and other information. This file
is named web.xml , and
resides in the app’s WEB-INF/ directory. web.xml is
part of the servlet standard for web
applications.

A web application’s deployment descriptor describes the classes, resources and
configuration of
the application and how the web server uses them to serve web
requests. When the web server
receives a request for the application, it uses
the deployment descriptor to map the URL of the
request to the code that ought
to handle the request.

Source: and
 .Configuring the web.xml Deployment Descriptor A web.xml Deployment Descriptor Elements

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 13

https://cloud.google.com/appengine/docs/flexible/java/configuring-the-web-xml-deployment-descriptor
https://docs.oracle.com/cd/E12839_01/web.1111/e13712/web_xml.htm
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

WEB APIS
RESTful APIs and other Web APIs

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 15

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

WHAT IS REST?

REPRESENTATIONAL STATE TRANSFER
Representational State Transfer (REST) is an architectural style that
abstracts elements within a distributed hypermedia system. REST
ignores
the details of component implementation and protocol syntax
in order to focus on
the roles of components, the constraints upon their
interaction with other
components, and their interpretation of
significant data elements. It
encompasses the fundamental constraints
upon components, connectors, and data
that define the basis of the
Web architecture, and thus the essence of its
behavior as a network-
based application.

The key abstraction of information in REST is a resource. Any
information
that can be named can be a resource: a document or
image, a temporal service
(e.g. “today’s weather in Los Angeles”), a
collection of other resources, a
non-virtual object (e.g. a person), and so
on. In other words, any concept that
might be the target of an author’s
hypertext reference must fit within the
definition of a resource. A
resource is a conceptual mapping to a set of
entities, not the entity that
corresponds to the mapping at any particular point
in time.

Source: ; and

by Roy Thomas Fielding (2000).What is REST Architectural Styles and the Design of Network-based Software Architectures

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 16

https://restfulapi.net/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

GUIDING PRINCIPLES OF REST
REST has its own guiding principles and constraints. These principles must be
satisfied if a service interface needs to
be referred to as RESTful. REST does
not enforce any rule regarding how it should be implemented at the lower level,
it
just put high-level design guidelines and leaves us to think of our own
implementation. The six guiding principles or
constraints of the RESTful
architecture are:

1. CLIENT-SERVER
Client applications and server applications must be able to evolve
separately without any dependency on each other. A client should know
only
resource URIs, and that’s all. Servers and clients may also be replaced
and
developed independently, as long as the interface between them is not
altered.

Separation of concerns is the principle behind the client-server constraints.
By
separating the user interface concerns from the data storage concerns,
we
improve the portability of the user interface across multiple platforms
and
improve scalability by simplifying the server components. Perhaps most
significant to the Web, however, is that the separation allows the
components to
evolve independently, thus supporting the Internet-scale
requirement of multiple
organizational domains.

ServerClient

Source: ; and

by Roy Thomas Fielding (2000).What is REST Architectural Styles and the Design of Network-based Software Architectures

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 17

https://restfulapi.net/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

GUIDING PRINCIPLES OF REST
REST has its own guiding principles and constraints. These principles must be
satisfied if a service interface needs to
be referred to as RESTful. REST does
not enforce any rule regarding how it should be implemented at the lower level,
it
just put high-level design guidelines and leaves us to think of our own
implementation. The six guiding principles or
constraints of the RESTful
architecture are:

2. STATELESS
Communication must be stateless in nature, such that each request from
client to
server must contain all of the information necessary to understand
the request,
and cannot take advantage of any stored context on the server.
Session state is
therefore kept entirely on the client.

This induces the properties of visibility, reliability, and scalability.
Visibility: a
monitoring system does not have to look beyond a single request in
order to
determine the full nature of the request. Reliability: it eases the
task of
recovering from partial failures. Scalability: not having to store state
between requests allows the server component to quickly free resources,
and
further simplifies implementation because the server doesn’t have to
manage
resource usage across requests.

ServerClient

Source: ; and

by Roy Thomas Fielding (2000).What is REST Architectural Styles and the Design of Network-based Software Architectures

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 17

https://restfulapi.net/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

GUIDING PRINCIPLES OF REST
REST has its own guiding principles and constraints. These principles must be
satisfied if a service interface needs to
be referred to as RESTful. REST does
not enforce any rule regarding how it should be implemented at the lower level,
it
just put high-level design guidelines and leaves us to think of our own
implementation. The six guiding principles or
constraints of the RESTful
architecture are:

3. CACHEABLE
To improve network efficiency, cache constraints require that the data
within a
response to a request be implicitly or explicitly labeled as cacheable
or
non-cacheable. If a response is cacheable, then a client cache is given the
right to reuse that response data for later, equivalent requests.

The advantage of adding cache constraints is that they have the potential to
partially or completely eliminate some interactions, improving efficiency,
scalability, and user-perceived performance by reducing the average latency
of a
series of interactions. The trade-off, however, is that a cache can
decrease
reliability if stale data within the cache differs significantly from the
data
that would have been obtained had the request been sent directly to
the server.

Server

$

$

Client + Cache

Client

Source: ; and

by Roy Thomas Fielding (2000).What is REST Architectural Styles and the Design of Network-based Software Architectures

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 17

https://restfulapi.net/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

GUIDING PRINCIPLES OF REST
REST has its own guiding principles and constraints. These principles must be
satisfied if a service interface needs to
be referred to as RESTful. REST does
not enforce any rule regarding how it should be implemented at the lower level,
it
just put high-level design guidelines and leaves us to think of our own
implementation. The six guiding principles or
constraints of the RESTful
architecture are:

4. UNIFORM INTERFACE
The software engineering principle of generality is applied to the component
interfaces simplifying the overall system architecture and improving
visibility
of interactions. Implementations are decoupled from the services
they provide,
which encourages independent evolvability.

REST is defined by four interface constraints in order to obtain a uniform
interface: identification of resources; manipulation of resources through
representations; self-descriptive messages; and, hypermedia as the engine
of
application state.

Server

$

$

Client + Cache

Client

$

Source: ; and

by Roy Thomas Fielding (2000).What is REST Architectural Styles and the Design of Network-based Software Architectures

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 17

https://restfulapi.net/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

GUIDING PRINCIPLES OF REST
REST has its own guiding principles and constraints. These principles must be
satisfied if a service interface needs to
be referred to as RESTful. REST does
not enforce any rule regarding how it should be implemented at the lower level,
it
just put high-level design guidelines and leaves us to think of our own
implementation. The six guiding principles or
constraints of the RESTful
architecture are:

5. LAYERED SYSTEM
In order to further improve behavior for Internet-scale requirements, the
layered
system contraint allows an architecture to be composed of
hierarchical layers by
constraining component behavior such that each
component cannot “see” beyond the
immediate layer with which they are
interacting. By restricting knowledge of the
system to a single layer, we place
a bound on the overall system complexity and
promote substrate
independence. Layers can be used to encapsulate legacy
services and to
protect new services from legacy clients, simplifying components
by moving
infrequently used functionality to a shared intermediary.
Intermediaries can
also be used to improve system scalability by enabling load
balancing of
services across multiple networks and processors.

$

$

Client + Cache

Client Server

$ $

$ $

Source: ; and

by Roy Thomas Fielding (2000).What is REST Architectural Styles and the Design of Network-based Software Architectures

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 17

https://restfulapi.net/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

GUIDING PRINCIPLES OF REST
REST has its own guiding principles and constraints. These principles must be
satisfied if a service interface needs to
be referred to as RESTful. REST does
not enforce any rule regarding how it should be implemented at the lower level,
it
just put high-level design guidelines and leaves us to think of our own
implementation. The six guiding principles or
constraints of the RESTful
architecture are:

6. CODE-ON-DEMAND
REST allows client functionality to be extended by downloading and
executing
code in the form of applets or scripts. This simplifies clients by
reducing the
number of features required to be pre-implemented. Allowing
features to be
downloaded after deployment improves system extensibility.
However, it also
reduces visibility, and thus is only an optional constraint
within REST.

$

$

Client + Cache

Client Server

$ $

$ $

JSJS

JS

Source: ; and

by Roy Thomas Fielding (2000).What is REST Architectural Styles and the Design of Network-based Software Architectures

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 17

https://restfulapi.net/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

CREATE

READ

UPDATE

DELETE

When we are building APIs, we want our models to provide four basic
types of
functionality. The model must be able to Create, Read, Update,
and Delete
resources. In a REST environment, CRUD often corresponds
to the HTTP methods
 PUT / POST , GET , PUT , and DELETE ,
respectively. These are the
fundamental elements of a persistent
storage system.

Despite the popular usage and widespread misconception, POST is not the “correct
method for
creating resource”. The semantics of other methods are determined by
the HTTP protocol, but
the semantics of POST are determined by the target media
type itself. POST is the method
used for any operation that isn’t standardized
by HTTP, so it can be used for creation, but also
can be used for updates, or
anything else that isn’t already done by some other method.

PUT is not the “correct method for updating resource”. PUT is the method used to
replace a
resource completely, ignoring its current state. You can use PUT for
creation if you have the
whole representation the server expects, and you can
use PUT for update if you provide a full
representation, including the parts
that you won’t change, but it’s not correct to use PUT for
partial updates,
because you’re asking for the server to consider the current state of the
resource. PATCH is the method to do that.

Source: ; and
 .

RESTFUL API
CRUD HTTP

Create PUT

Read GET

Update PUT

Delete DELETE

DATABASES - SQL
CRUD SQL

Create INSERT

Read SELECT

Update UPDATE

Delete DELETE
What is CRUD? S3 REST API and POST method - StackOverflow

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 18

https://www.codecademy.com/articles/what-is-crud
https://stackoverflow.com/questions/19843480/s3-rest-api-and-post-method/19844272#19844272
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

REST API EXAMPLE
PUT /products Create a new Product.

GET /products Retrieve a list of all Products.

GET /product/<id> Retrieve the Product with the given <id> .

PUT /product/<id> Update the Product with the given <id> .

DELETE /product/<id> Delete the Product with the given <id> .

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 19

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

OTHER WEB APIS

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 20

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

SIMPLE OBJECT ACCESS
PROTOCOL (SOAP)
Simple Object Access Protocol (SOAP) is a lightweight protocol for the
exchange of information in a decentralized, distributed environment. It is an
XML based protocol that consists of three parts: an envelope that defines a
framework for describing what is in a message and how to process it; a set of
encoding rules for expressing instances of application-defined data types;
and a
convention for representing remote procedure calls and responses.

A communication protocol designed to communicate via Internet.

Extends HTTP for XML messaging.

Provides data transport for Web services.

Exchanges complete documents or calls remote procedures.

Can be used for broadcasting a message.

Both platform and language independent.

The XML way of defining what information is sent and how.

Enables client applications to easily connect to remote services and
invoke remote methods.

EXAMPLE REQUEST

EXAMPLE RESPONSE

<?xml version="1.0" ?>

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope/"

 soap:encodingStyle="http://www.w3.org/2003/05/soap-encoding">

 <soap:Body>

 <m:GetPrice xmlns:m="https://www.example.com/prices">

 <m:Item>Apples</m:Item>

 </m:GetPrice>

 </soap:Body>

</soap:Envelope>

<?xml version="1.0" ?>

<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope/"

 soap:encodingStyle="http://www.w3.org/2003/05/soap-encoding">

 <soap:Body>

 <m:GetPriceResponse xmlns:m="https://www.example.com/prices">

 <m:Price>1.90</m:Price>

 </m:GetPriceResponse>

 </soap:Body>

</soap:Envelope>

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 21

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

WEB SERVICES DESCRIPTION LANGUAGE (WSDL)
A Web Services Description Language (WSDL) document is a standard
way of
describing a web service. A WSDL file is written in XML, and it
defines the
location of the web service, its operations (methods), the
messages used by each
operation, and the XML elements, or data types,
within.

WSDL is often used in combination with SOAP and XML Schema to
provide web
services over the Internet. A client program connecting to a
web service can
read the WSDL to determine what functions are
available on the server. Any
special datatypes used are embedded in the
WSDL file in the form of XML Schema.
The client can then use SOAP to
actually call one of the functions listed in the WSDL.

A WSDL file typically consists of the following sections:

types Which defines the data types (XML elements) that are
used by the web service.

message Each of which defines a message exchanged with the
web service.

portType Which combine multiple messages into a single
operation: for synchronous operations, this is usually
one input and one output.

binding Which defines exactly how each operation will take
place over the network (SOAP, in this example).

service Which says where the service can be accessed from – in
other words, its endpoint.

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 22

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

WSDL EXAMPLE
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:tns="http://www.example.com/BookService/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 name="BookService" targetNamespace="http://www.example.com/BookService/">

 <!-- The `types` element defines the data types (XML elements)

 that are used by the web service. -->

 <wsdl:types>

 <xsd:schema targetNamespace="http://www.example.com/BookService/">

 <xsd:element name="Book">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="ID" type="xsd:string" minOccurs="0"/>

 <xsd:element name="Title" type="xsd:string"/>

 <xsd:element name="Author" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="GetBook">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="ID" type="xsd:string"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="GetBookResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="tns:Book" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:schema>

 </wsdl:types>

 ...

 <!-- A wsdl `message` element is used to define a message

 exchanged between a web service, consisting of zero

 or more `part`s. -->

 <wsdl:message name="GetBookRequest">

 <wsdl:part element="tns:GetBook" name="parameters"/>

 </wsdl:message>

 <wsdl:message name="GetBookResponse">
 <wsdl:part element="tns:GetBookResponse" name="parameters"/>
 </wsdl:message>

 <!-- A WSDL `portType` is used to combine multiple `message`s

 (e.g. input, output) into a single operation.

 Here we define three synchronous (input/output) operations

 and the `message`s that must be used for each. -->

 <wsdl:portType name="BookService">

 <wsdl:operation name="GetBook">

 <wsdl:input message="tns:GetBookRequest"/>

 <wsdl:output message="tns:GetBookResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <!-- The `binding` element defines exactly how each

 `operation` will take place over the network.

 In this case, we are using SOAP. -->

 <wsdl:binding name="BookServiceSOAP" type="tns:BookService">

 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="GetBook">

 <soap:operation soapAction="http://www.example.com/BookService/GetBook"/>

 <wsdl:input><soap:body use="literal"/></wsdl:input>

 <wsdl:output><soap:body use="literal"/></wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <!-- The `service` element finally says where the service

 can be accessed from - in other words, its endpoint. -->

 <wsdl:service name="BookService">

 <wsdl:port binding="tns:BookServiceSOAP" name="BookServiceSOAP">

 <soap:address location="http://www.example.org/BookService"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 23

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

MORE WEB APIS
XML-RPC
JSON-RPC
GraphQL

FALCOR
gRPC
RabbitMQ

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 24

http://xmlrpc.com/
https://www.jsonrpc.org/specification
http://graphql.org/
https://netflix.github.io/falcor/
https://grpc.io/
https://www.rabbitmq.com/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

This slide is intentionally left blank.
Return to Course Page

Web Services II - EECS 4413Web Services II - EECS 4413 11 October 202111 October 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 25

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/schedule
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

