
SERVER-SIDE

MICROSERVICES
THE ARCHITECTURE
TCP PROTOCOL
TCP SERVICES

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 2

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


VERSION

v1.2 23 September 2021 Split presentation in 2. Part II, .

v1.1 21 September 2021 Revision to  Section

v1.0 14 September 2021 Initial Release

here

TCP Services

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 3

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/slides/02-microservices-2
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


ACKNOWLEDGMENTS

THANKS TO:
Hamzeh Roumani, who has shaped EECS-4413 into a leading hands-on CS course at EECS
and who generously shared all of his course materials and, more importantly, his teaching
philosophy with me;
Parke Godfrey, my long-suffering Master’s supervisor and mentor; and
Suprakash Datta for giving me this opportunity to teach this course.

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 4

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


PRINTABLE VERSION OF THE TALK

Download PDF

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 5

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/files/slides/01-microservices.pdf
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


MONOLITHIC

VS

MICROSERVICES

Source:  by Romana Gnatyk, 03 October 2018.Microservices vs Monolith: which architecture is the best choice for your business?

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 7

https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


MONOLITHIC ARCHITECTURE
Monolithic architecture is considered to be a traditional way of building applications. A
monolithic application is built as a single and indivisible unit. Usually, such a solution
comprises a client-side user interface, a server side-application, and a database. It is
unified and all the functions are managed and served in one place.

User Interface

Business Logic

Data Interface

Database

STRENGTHS

Less cross-cutting concerns:

Logging,
Handling,
Caching,
Performance monitoring, and
Security.

Easier debugging and testing
Simple to deploy
Simple to develop

WEAKNESSES

Understanding and complexity
Making changes
Scalability
New technology barriers

Source:  by Romana Gnatyk, 03 October 2018.Microservices vs Monolith: which architecture is the best choice for your business?

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 8

https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


MICROSERVICE ARCHITECTURE

User Interface

Microservice

Database Database

Microservice Microservice

Microservice

A microservices architecture breaks the application down into a
collection of smaller independent units. These units carry out every
application process as a separate service. So all the services have their
own logic and access the database separately to perform specific
functions. They are multithreaded, pooled, containerized, and each on
separate nodes.

Functionality is divided into independently deployable modules that
communicate with each other through APIs over technology-agnostic
protocols such as HTTP. Each service has its own scope and can be
updated, deployed, and scaled independently.

Source:  by Romana Gnatyk, 03 October 2018.Microservices vs Monolith: which architecture is the best choice for your business?

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 9

https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


MICROSERVICE ARCHITECTURE

User Interface

Microservice

Database Database

Microservice Microservice

Microservice

STRENGTHS

Independent components
Easier understanding
Better scalability
Load-balancing
Flexibility with technology
The higher level of agility

WEAKNESSES

Extra complexity
System distribution
Testing
Cross-cutting concerns:

Configurations,
Logging,
Metrics,
Health checks,
Security, and
Others.

Source:  by Romana Gnatyk, 03 October 2018.Microservices vs Monolith: which architecture is the best choice for your business?

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 9

https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business/
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


TCP
THE PROTOCOL

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 11

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


WHAT IS TCP/IP?
TCP/IP stands for Transmission Control Protocol / Internet Protocol.

TCP/IP is a set of standardized rules that allow computers to
communicate on a network such as the Internet.

IP is machine-to-machine. TCP is process-to-process. Each process
listens to a socket. Each socket has an assigned Port number.

TCP and IP are two separate network protocols. IP is the part that
obtains the address to which data is sent. TCP is responsible for
data delivery once that IP address has been found.

TCP provides reliable, ordered, and error-checked delivery of a
stream of bytes between applications running on hosts
communicating via an IP network.

TCP is a text- and binary-based protocol, and custom or standard
protocol built on top of it, such as HTTP, SMTP, FTP, SSH, etc.

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 12

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


WHAT IS TCP/IP?
TCP/IP stands for Transmission Control Protocol / Internet Protocol.

The loopback (127.0.0.1) or localhost is a hostname that refers to
the current computer used to access it. It is used to access the
network services that are running on the host via the loopback
network interface.

There are private and public IPs. Private IPs are only accessible
within the network and public IPs are accessible to everyone on the
Internet.

The Domain Name System (DNS) is a hierarchical and decentralized
naming system for computers, services, or other resources
connected to the Internet or a private network. It maps numeric IP
addresses to human-readable domain names or hostnames of
specific computers.

A router maps public IPs to private IPs via Network address
translation (NAT), a method of mapping an IP address space into
another by modifying network address information in the IP header
of packets while they are in transit across a traffic routing device.

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 12

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


PRIVATE IPs
Reserved private IPv4 network ranges:

Name CIDR Block Address Range Number of Addresses

24-bit block 10.0.0.0/8 10.0.0.0 – 10.255.255.255 16,777,216

20-bit block 172.16.0.0/12 172.16.0.0 – 172.31.255.255 1,048,576

16-bit block 192.168.0.0/16 192.168.0.0 – 192.168.255.255 65,536

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 13

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


TELNET

Telnet is a client-server protocol based on text-oriented
data exchange over TCP connections.

Telnet enables remote communication with a TCP server
via text-based inputs and outputs.

$ telnet hostname port

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 14

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


TCP
SERVICES

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 16

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


SOCKETS

Client ServerNetwork

Input

Output

Output

Input

:80:41354

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 17

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


/** Usage: java TCPClient <host> <port> */
public class TCPClient {
  private static PrintStream Log = System.out;
  private static void validateArgs(String[] args) { ... }
  public static void main(String[] args) throws Exception {
    validateArgs(args);
 
    Socket client = null;
    try {
      client          = new Socket(args[0], Integer.parseInt(args[1])); // Socket(host, port)
      PrintStream req = new PrintStream(client.getOutputStream(), true);
      Scanner res     = new Scanner(client.getInputStream());
      Scanner in      = new Scanner(System.in);
 
      Log.printf("Connected to server %s:%d\n", client.getInetAddress(), client.getPort());
      Log.print("Enter your request, then press <Enter>: ");
      String request = in.nextLine();
      req.println(request);
 
      String response = res.nextLine();
      Log.print("The response is: ");
      Log.println(response);
    } catch (Exception e) {
      Log.println(e);
    } finally {
      try {
        client.close();
      } catch (Exception e) {
        Log.println("Failed to close client connection: " + e.getMessage());
      }
      Log.println("Client connection closed.");
    }
  }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

TCP CLIENT

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 18

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


    Socket client = null;

      client          = new Socket(args[0], Integer.parseInt(args[1])); // Socket(host, port)

/** Usage: java TCPClient <host> <port> */1
public class TCPClient {2
  private static PrintStream Log = System.out;3
  private static void validateArgs(String[] args) { ... }4
  public static void main(String[] args) throws Exception {5
    validateArgs(args);6
 7

8
    try {9

10
      PrintStream req = new PrintStream(client.getOutputStream(), true);11
      Scanner res     = new Scanner(client.getInputStream());12
      Scanner in      = new Scanner(System.in);13
 14
      Log.printf("Connected to server %s:%d\n", client.getInetAddress(), client.getPort());15
      Log.print("Enter your request, then press <Enter>: ");16
      String request = in.nextLine();17
      req.println(request);18
 19
      String response = res.nextLine();20
      Log.print("The response is: ");21
      Log.println(response);22
    } catch (Exception e) {23
      Log.println(e);24
    } finally {25
      try {26
        client.close();27
      } catch (Exception e) {28
        Log.println("Failed to close client connection: " + e.getMessage());29
      }30
      Log.println("Client connection closed.");31
    }32
  }33
}34

TCP CLIENT
Specify the server’s host IP address and
TCP socket port number that it is
listening to.

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 18

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


      PrintStream req = new PrintStream(client.getOutputStream(), true);

      req.println(request);

/** Usage: java TCPClient <host> <port> */1
public class TCPClient {2
  private static PrintStream Log = System.out;3
  private static void validateArgs(String[] args) { ... }4
  public static void main(String[] args) throws Exception {5
    validateArgs(args);6
 7
    Socket client = null;8
    try {9
      client          = new Socket(args[0], Integer.parseInt(args[1])); // Socket(host, port)10

11
      Scanner res     = new Scanner(client.getInputStream());12
      Scanner in      = new Scanner(System.in);13
 14
      Log.printf("Connected to server %s:%d\n", client.getInetAddress(), client.getPort());15
      Log.print("Enter your request, then press <Enter>: ");16
      String request = in.nextLine();17

18
 19
      String response = res.nextLine();20
      Log.print("The response is: ");21
      Log.println(response);22
    } catch (Exception e) {23
      Log.println(e);24
    } finally {25
      try {26
        client.close();27
      } catch (Exception e) {28
        Log.println("Failed to close client connection: " + e.getMessage());29
      }30
      Log.println("Client connection closed.");31
    }32
  }33
}34

TCP CLIENT
Specify the server’s host IP address and
TCP socket port number that it is
listening to.

Get an output stream to issue the
request to the server.

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 18

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


      Scanner res     = new Scanner(client.getInputStream());

      String response = res.nextLine();

/** Usage: java TCPClient <host> <port> */1
public class TCPClient {2
  private static PrintStream Log = System.out;3
  private static void validateArgs(String[] args) { ... }4
  public static void main(String[] args) throws Exception {5
    validateArgs(args);6
 7
    Socket client = null;8
    try {9
      client          = new Socket(args[0], Integer.parseInt(args[1])); // Socket(host, port)10
      PrintStream req = new PrintStream(client.getOutputStream(), true);11

12
      Scanner in      = new Scanner(System.in);13
 14
      Log.printf("Connected to server %s:%d\n", client.getInetAddress(), client.getPort());15
      Log.print("Enter your request, then press <Enter>: ");16
      String request = in.nextLine();17
      req.println(request);18
 19

20
      Log.print("The response is: ");21
      Log.println(response);22
    } catch (Exception e) {23
      Log.println(e);24
    } finally {25
      try {26
        client.close();27
      } catch (Exception e) {28
        Log.println("Failed to close client connection: " + e.getMessage());29
      }30
      Log.println("Client connection closed.");31
    }32
  }33
}34

TCP CLIENT
Specify the server’s host IP address and
TCP socket port number that it is
listening to.

Get an output stream to issue the
request to the server.

Get an input stream to read the response
from the server.

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 18

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


      try {
        client.close();
      } catch (Exception e) {
        Log.println("Failed to close client connection: " + e.getMessage());
      }

/** Usage: java TCPClient <host> <port> */1
public class TCPClient {2
  private static PrintStream Log = System.out;3
  private static void validateArgs(String[] args) { ... }4
  public static void main(String[] args) throws Exception {5
    validateArgs(args);6
 7
    Socket client = null;8
    try {9
      client          = new Socket(args[0], Integer.parseInt(args[1])); // Socket(host, port)10
      PrintStream req = new PrintStream(client.getOutputStream(), true);11
      Scanner res     = new Scanner(client.getInputStream());12
      Scanner in      = new Scanner(System.in);13
 14
      Log.printf("Connected to server %s:%d\n", client.getInetAddress(), client.getPort());15
      Log.print("Enter your request, then press <Enter>: ");16
      String request = in.nextLine();17
      req.println(request);18
 19
      String response = res.nextLine();20
      Log.print("The response is: ");21
      Log.println(response);22
    } catch (Exception e) {23
      Log.println(e);24
    } finally {25

26
27
28
29
30

      Log.println("Client connection closed.");31
    }32
  }33
}34

TCP CLIENT
Specify the server’s host IP address and
TCP socket port number that it is
listening to.

Get an output stream to issue the
request to the server.

Get an input stream to read the response
from the server.

Close the connection with the server.

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 18

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


    try (
      Socket client   = new Socket(args[0], Integer.parseInt(args[1])); // Socket(host, port)
      PrintStream req = new PrintStream(client.getOutputStream(), true);
      Scanner res     = new Scanner(client.getInputStream());
      Scanner in      = new Scanner(System.in);
    ) {

    } catch (Exception e) {
      Log.println(e);
    } finally {
      Log.println("Client connection closed.");
    }

/** Usage: java TCPClient <host> <port> */1
public class TCPClient {2
  private static PrintStream Log = System.out;3
  private static void validateArgs(String[] args) { ... }4
  public static void main(String[] args) throws Exception {5
    validateArgs(args);6
 7

8
9

10
11
12
13

      Log.printf("Connected to server %s:%d\n", client.getInetAddress(), client.getPort());14
      Log.print("Enter your request, then press <Enter>: ");15
      String request = in.nextLine();16
      req.println(request);17
 18
      String response = res.nextLine();19
      Log.print("The response is: ");20
      Log.println(response);21

22
23
24
25
26

  }27
}28

TCP CLIENT
Specify the server’s host IP address and
TCP socket port number that it is
listening to.

Get an output stream to issue the
request to the server.

Get an input stream to read the response
from the server.

Close the connection with the server.

Or use a try-with-resources block to
automatically close the connection and
the input and output streams.

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 18

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


/** Usage: java TCPServer */
public class TCPServer extends Thread {
  private static PrintStream Log = System.out;
  private Socket client;
  private TCPServer(Socket client) {
    this.client = client;
  }
  public static void main(String[] args) throws Exception {
    int port = 0;
    InetAddress host = InetAddress.getLocalHost(); // .getLoopbackAddress();
    try (ServerSocket server = new ServerSocket(port, 0, host)) {
      Log.printf("Server listening on %s:%d\n", server.getInetAddress(), server.getLocalPort(
      while (true) {
        Socket client = server.accept();
        (new TCPServer(client)).start();
      }
    }
  }
  public void run() {
    // ...
  }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

TCP SERVER
Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 19

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


public class TCPServer extends Thread {

  public void run() {
    // ...
  }

/** Usage: java TCPServer */1
2

  private static PrintStream Log = System.out;3
  private Socket client;4
  private TCPServer(Socket client) {5
    this.client = client;6
  }7
  public static void main(String[] args) throws Exception {8
    int port = 0;9
    InetAddress host = InetAddress.getLocalHost(); // .getLoopbackAddress();10
    try (ServerSocket server = new ServerSocket(port, 0, host)) {11
      Log.printf("Server listening on %s:%d\n", server.getInetAddress(), server.getLocalPort(12
      while (true) {13
        Socket client = server.accept();14
        (new TCPServer(client)).start();15
      }16
    }17
  }18

19
20
21

}22

TCP SERVER
A server must be able to accept multiple clients at the
same time. To support concurrency, we extend the 

 class. There are two ways to create a new
thread of execution. This is the first.
Thread

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 19

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


        (new TCPServer(client)).start();

  public void run() {
    // ...
  }

/** Usage: java TCPServer */1
public class TCPServer extends Thread {2
  private static PrintStream Log = System.out;3
  private Socket client;4
  private TCPServer(Socket client) {5
    this.client = client;6
  }7
  public static void main(String[] args) throws Exception {8
    int port = 0;9
    InetAddress host = InetAddress.getLocalHost(); // .getLoopbackAddress();10
    try (ServerSocket server = new ServerSocket(port, 0, host)) {11
      Log.printf("Server listening on %s:%d\n", server.getInetAddress(), server.getLocalPort(12
      while (true) {13
        Socket client = server.accept();14

15
      }16
    }17
  }18

19
20
21

}22

TCP SERVER
A server must be able to accept multiple clients at the
same time. To support concurrency, we extend the 

 class. There are two ways to create a new
thread of execution. This is the first.
Thread

To start the thread running, we call the start  method
which invokes the run  method. We override the run
method with our own implementation. More later.

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 19

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


    int port = 0;
    InetAddress host = InetAddress.getLocalHost(); // .getLoopbackAddress();
    try (ServerSocket server = new ServerSocket(port, 0, host)) {

/** Usage: java TCPServer */1
public class TCPServer extends Thread {2
  private static PrintStream Log = System.out;3
  private Socket client;4
  private TCPServer(Socket client) {5
    this.client = client;6
  }7
  public static void main(String[] args) throws Exception {8

9
10
11

      Log.printf("Server listening on %s:%d\n", server.getInetAddress(), server.getLocalPort(12
      while (true) {13
        Socket client = server.accept();14
        (new TCPServer(client)).start();15
      }16
    }17
  }18
  public void run() {19
    // ...20
  }21
}22

TCP SERVER
A server must be able to accept multiple clients at the
same time. To support concurrency, we extend the 

 class. There are two ways to create a new
thread of execution. This is the first.
Thread

To start the thread running, we call the start  method
which invokes the run  method. We override the run
method with our own implementation. More later.

Create a server instance on a host and port. We will use
the local host’s own IP address. Alternatively, we could
use the loopback address. However, this would restrict
connections to the server to clients on the same host.
See next slide for detail about 
constructor.

ServerSocket

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 19

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


      Log.printf("Server listening on %s:%d\n", server.getInetAddress(), server.getLocalPort(

/** Usage: java TCPServer */1
public class TCPServer extends Thread {2
  private static PrintStream Log = System.out;3
  private Socket client;4
  private TCPServer(Socket client) {5
    this.client = client;6
  }7
  public static void main(String[] args) throws Exception {8
    int port = 0;9
    InetAddress host = InetAddress.getLocalHost(); // .getLoopbackAddress();10
    try (ServerSocket server = new ServerSocket(port, 0, host)) {11

12
      while (true) {13
        Socket client = server.accept();14
        (new TCPServer(client)).start();15
      }16
    }17
  }18
  public void run() {19
    // ...20
  }21
}22

TCP SERVER
A server must be able to accept multiple clients at the
same time. To support concurrency, we extend the 

 class. There are two ways to create a new
thread of execution. This is the first.
Thread

To start the thread running, we call the start  method
which invokes the run  method. We override the run
method with our own implementation. More later.

Create a server instance on a host and port. We will use
the local host’s own IP address. Alternatively, we could
use the loopback address. However, this would restrict
connections to the server to clients on the same host.
See next slide for detail about 
constructor.

ServerSocket

Query the server’s host and port for logging.

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 19

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


      while (true) {
        Socket client = server.accept();
        (new TCPServer(client)).start();
      }

/** Usage: java TCPServer */1
public class TCPServer extends Thread {2
  private static PrintStream Log = System.out;3
  private Socket client;4
  private TCPServer(Socket client) {5
    this.client = client;6
  }7
  public static void main(String[] args) throws Exception {8
    int port = 0;9
    InetAddress host = InetAddress.getLocalHost(); // .getLoopbackAddress();10
    try (ServerSocket server = new ServerSocket(port, 0, host)) {11
      Log.printf("Server listening on %s:%d\n", server.getInetAddress(), server.getLocalPort(12

13
14
15
16

    }17
  }18
  public void run() {19
    // ...20
  }21
}22

TCP SERVER
A server must be able to accept multiple clients at the
same time. To support concurrency, we extend the 

 class. There are two ways to create a new
thread of execution. This is the first.
Thread

To start the thread running, we call the start  method
which invokes the run  method. We override the run
method with our own implementation. More later.

Create a server instance on a host and port. We will use
the local host’s own IP address. Alternatively, we could
use the loopback address. However, this would restrict
connections to the server to clients on the same host.
See next slide for detail about 
constructor.

ServerSocket

Query the server’s host and port for logging.

Accept the next client connection. Blocks until a
request arrives. Then, create a new thread and starts it
running. Loops until the server is shut down.

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 19

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html
https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


SERVERSOCKET
Create a server with the specified port, listen backlog, and local IP address to bind to.

public ServerSocket(int port, int backlog, InetAddress bindAddr) throws IOException;

port Must be between 0  and 65535  (16-bits), inclusive. 
A port number of 0  means that the port number is
automatically allocated.

backlog Is the requested maximum number of pending
connections on the socket. The value provided should
be greater than 0 . If it is less than or equal to 0 , then
an implementation-specific default will be used.

bindAddr Can be used on a multi-homed host for a 
 that will only accept connect requests

to one of its addresses. If bindAddr  is null, it will
default accepting connections on any/all local
addresses.

ServerSocket

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 20

https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


  public void run() {
    Log.printf("Connected to %s:%d\n", client.getInetAddress(), client.getPort());
 
    try (
      Socket client   = this.client; // Ensures client connection will be closed by try-statement.
      Scanner req     = new Scanner(client.getInputStream());
      PrintStream res = new PrintStream(client.getOutputStream(), true);
    ) {
      String response;
      String request = req.nextLine();
 
      if (validateRequest(request)) {
        response = handleRequest(request);
      } else {
        response = "Don't understand: " + request;
      }
      res.println(response);
    } catch (Exception e) {
      Log.println(e);
    } finally {
      Log.printf("Disconnected from %s:%d\n", client.getInetAddress(), client.getPort());
    }
  }

/** Usage: java TCPServer */1
public class TCPServer extends Thread {2
  // ...3
  public static void main(String[] args) throws Exception {4
    int port = 0;5
    InetAddress host = InetAddress.getLocalHost(); // .getLoopbackAddress();6
    try (ServerSocket server = new ServerSocket(port, 0, host)) {7
      Log.printf("Server listening on %s:%d\n", server.getInetAddress(), server.getLocalPort());8
      while (true) {9
        (new TCPServer(server.accept())).start();10
      }11
    }12
  }13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

}37

TCP SERVER run

In microservices,  would
typically: compute, use APIs, lookup a
database, use HTTP, etc.

run

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 21

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


    Log.printf("Connected to %s:%d\n", client.getInetAddress(), client.getPort());

      Scanner req     = new Scanner(client.getInputStream());
      PrintStream res = new PrintStream(client.getOutputStream(), true);

/** Usage: java TCPServer */1
public class TCPServer extends Thread {2
  // ...3
  public static void main(String[] args) throws Exception {4
    int port = 0;5
    InetAddress host = InetAddress.getLocalHost(); // .getLoopbackAddress();6
    try (ServerSocket server = new ServerSocket(port, 0, host)) {7
      Log.printf("Server listening on %s:%d\n", server.getInetAddress(), server.getLocalPort());8
      while (true) {9
        (new TCPServer(server.accept())).start();10
      }11
    }12
  }13
  public void run() {14

15
 16
    try (17
      Socket client   = this.client; // Ensures client connection will be closed by try-statement.18

19
20

    ) {21
      String response;22
      String request = req.nextLine();23
 24
      if (validateRequest(request)) {25
        response = handleRequest(request);26
      } else {27
        response = "Don't understand: " + request;28
      }29
      res.println(response);30
    } catch (Exception e) {31
      Log.println(e);32
    } finally {33
      Log.printf("Disconnected from %s:%d\n", client.getInetAddress(), client.getPort());34
    }35
  }36
}37

TCP SERVER run

In microservices,  would
typically: compute, use APIs, lookup a
database, use HTTP, etc.

run

Query the client socket:

client.getPort
client.getInetAddress
client.getInputStream
client.getOutputStream

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 21

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


      Scanner req     = new Scanner(client.getInputStream());

      String request = req.nextLine();

/** Usage: java TCPServer */1
public class TCPServer extends Thread {2
  // ...3
  public static void main(String[] args) throws Exception {4
    int port = 0;5
    InetAddress host = InetAddress.getLocalHost(); // .getLoopbackAddress();6
    try (ServerSocket server = new ServerSocket(port, 0, host)) {7
      Log.printf("Server listening on %s:%d\n", server.getInetAddress(), server.getLocalPort());8
      while (true) {9
        (new TCPServer(server.accept())).start();10
      }11
    }12
  }13
  public void run() {14
    Log.printf("Connected to %s:%d\n", client.getInetAddress(), client.getPort());15
 16
    try (17
      Socket client   = this.client; // Ensures client connection will be closed by try-statement.18

19
      PrintStream res = new PrintStream(client.getOutputStream(), true);20
    ) {21
      String response;22

23
 24
      if (validateRequest(request)) {25
        response = handleRequest(request);26
      } else {27
        response = "Don't understand: " + request;28
      }29
      res.println(response);30
    } catch (Exception e) {31
      Log.println(e);32
    } finally {33
      Log.printf("Disconnected from %s:%d\n", client.getInetAddress(), client.getPort());34
    }35
  }36
}37

TCP SERVER run

In microservices,  would
typically: compute, use APIs, lookup a
database, use HTTP, etc.

run

Query the client socket:

client.getPort
client.getInetAddress
client.getInputStream
client.getOutputStream

Get an input stream to read the request from the client.

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 21

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


      if (validateRequest(request)) {
        response = handleRequest(request);
      } else {
        response = "Don't understand: " + request;
      }

/** Usage: java TCPServer */1
public class TCPServer extends Thread {2
  // ...3
  public static void main(String[] args) throws Exception {4
    int port = 0;5
    InetAddress host = InetAddress.getLocalHost(); // .getLoopbackAddress();6
    try (ServerSocket server = new ServerSocket(port, 0, host)) {7
      Log.printf("Server listening on %s:%d\n", server.getInetAddress(), server.getLocalPort());8
      while (true) {9
        (new TCPServer(server.accept())).start();10
      }11
    }12
  }13
  public void run() {14
    Log.printf("Connected to %s:%d\n", client.getInetAddress(), client.getPort());15
 16
    try (17
      Socket client   = this.client; // Ensures client connection will be closed by try-statement.18
      Scanner req     = new Scanner(client.getInputStream());19
      PrintStream res = new PrintStream(client.getOutputStream(), true);20
    ) {21
      String response;22
      String request = req.nextLine();23
 24

25
26
27
28
29

      res.println(response);30
    } catch (Exception e) {31
      Log.println(e);32
    } finally {33
      Log.printf("Disconnected from %s:%d\n", client.getInetAddress(), client.getPort());34
    }35
  }36
}37

TCP SERVER run

In microservices,  would
typically: compute, use APIs, lookup a
database, use HTTP, etc.

run

Query the client socket:

client.getPort
client.getInetAddress
client.getInputStream
client.getOutputStream

Get an input stream to read the request from the client.

Validate the request, process it and form a respond.

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 21

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


      PrintStream res = new PrintStream(client.getOutputStream(), true);

      res.println(response);

/** Usage: java TCPServer */1
public class TCPServer extends Thread {2
  // ...3
  public static void main(String[] args) throws Exception {4
    int port = 0;5
    InetAddress host = InetAddress.getLocalHost(); // .getLoopbackAddress();6
    try (ServerSocket server = new ServerSocket(port, 0, host)) {7
      Log.printf("Server listening on %s:%d\n", server.getInetAddress(), server.getLocalPort());8
      while (true) {9
        (new TCPServer(server.accept())).start();10
      }11
    }12
  }13
  public void run() {14
    Log.printf("Connected to %s:%d\n", client.getInetAddress(), client.getPort());15
 16
    try (17
      Socket client   = this.client; // Ensures client connection will be closed by try-statement.18
      Scanner req     = new Scanner(client.getInputStream());19

20
    ) {21
      String response;22
      String request = req.nextLine();23
 24
      if (validateRequest(request)) {25
        response = handleRequest(request);26
      } else {27
        response = "Don't understand: " + request;28
      }29

30
    } catch (Exception e) {31
      Log.println(e);32
    } finally {33
      Log.printf("Disconnected from %s:%d\n", client.getInetAddress(), client.getPort());34
    }35
  }36
}37

TCP SERVER run

In microservices,  would
typically: compute, use APIs, lookup a
database, use HTTP, etc.

run

Query the client socket:

client.getPort
client.getInetAddress
client.getInputStream
client.getOutputStream

Get an input stream to read the request from the client.

Validate the request, process it and form a respond.

Send the respond via an output stream to the client.

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 21

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


    try (
      Socket client   = this.client; // Ensures client connection will be closed by try-statement.
      Scanner req     = new Scanner(client.getInputStream());
      PrintStream res = new PrintStream(client.getOutputStream(), true);
    ) {

    } catch (Exception e) {
      Log.println(e);
    } finally {
      Log.printf("Disconnected from %s:%d\n", client.getInetAddress(), client.getPort());
    }

/** Usage: java TCPServer */1
public class TCPServer extends Thread {2
  // ...3
  public static void main(String[] args) throws Exception {4
    int port = 0;5
    InetAddress host = InetAddress.getLocalHost(); // .getLoopbackAddress();6
    try (ServerSocket server = new ServerSocket(port, 0, host)) {7
      Log.printf("Server listening on %s:%d\n", server.getInetAddress(), server.getLocalPort());8
      while (true) {9
        (new TCPServer(server.accept())).start();10
      }11
    }12
  }13
  public void run() {14
    Log.printf("Connected to %s:%d\n", client.getInetAddress(), client.getPort());15
 16

17
18
19
20
21

      String response;22
      String request = req.nextLine();23
 24
      if (validateRequest(request)) {25
        response = handleRequest(request);26
      } else {27
        response = "Don't understand: " + request;28
      }29
      res.println(response);30

31
32
33
34
35

  }36
}37

TCP SERVER run

In microservices,  would
typically: compute, use APIs, lookup a
database, use HTTP, etc.

run

Query the client socket:

client.getPort
client.getInetAddress
client.getInputStream
client.getOutputStream

Get an input stream to read the request from the client.

Validate the request, process it and form a respond.

Send the respond via an output stream to the client.

Close the connection with the client. or let Java
automatically close it along the input and output
streams at the end of the try-with-statement.

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 21

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


TCP CLIENT & SERVER

/** Usage: java TCPClient <host> <port> */
public class TCPClient {
  private static PrintStream Log = System.out;
  private static void validateArgs(String[] args) { ... }
  public static void main(String[] args) throws Exception {
    validateArgs(args);
 
    try (
      Socket client   = new Socket(args[0], Integer.parseInt(args[1])); // Socket(host, por
      PrintStream req = new PrintStream(client.getOutputStream(), true);
      Scanner res     = new Scanner(client.getInputStream());
      Scanner in      = new Scanner(System.in);
    ) {
      Log.printf("Connected to server %s:%d\n", client.getInetAddress(), client.getPort());
      Log.print("Enter your request, then press <Enter>: ");
      String request = in.nextLine();
      req.println(request);
 
      String response = res.nextLine();
      Log.print("The response is: ");
      Log.println(response);
    } catch (Exception e) {
      Log.println(e);
    } finally {
      Log.println("Client connection closed.");
    }
  }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

/** Usage: java TCPServer */
public class TCPServer extends Thread {
  // ...
  public static void main(String[] args) throws Exception {
    int port = 0;
    InetAddress host = InetAddress.getLocalHost(); // .getLoopbackAddress();
    try (ServerSocket server = new ServerSocket(port, 0, host)) {
      Log.printf("Server listening on %s:%d\n", server.getInetAddress(), server.getLocalPor
      while (true) {
        (new TCPServer(server.accept())).start();
      }
    }
  }
  public void run() {
    Log.printf("Connected to %s:%d\n", client.getInetAddress(), client.getPort());
 
    try (
      Socket client   = this.client; // Ensures client connection will be closed by try-sta
      Scanner req     = new Scanner(client.getInputStream());
      PrintStream res = new PrintStream(client.getOutputStream(), true);
    ) {
      String response;
      String request = req.nextLine();
 
      if (validateRequest(request)) {
        response = handleRequest(request);
      } else {
        response = "Don't understand: " + request;
      }
      res.println(response);
    } catch (Exception e) {
      Log.println(e);
    } finally {
      Log.printf("Disconnected from %s:%d\n", client.getInetAddress(), client.getPort());
    }
  }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 22

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


TCP CLIENT & SERVER
Server starts and listens for new connections.

/** Usage: java TCPClient <host> <port> */1
public class TCPClient {2
  private static PrintStream Log = System.out;3
  private static void validateArgs(String[] args) { ... }4
  public static void main(String[] args) throws Exception {5
    validateArgs(args);6
 7
    try (8
      Socket client   = new Socket(args[0], Integer.parseInt(args[1])); // Socket(host, por9
      PrintStream req = new PrintStream(client.getOutputStream(), true);10
      Scanner res     = new Scanner(client.getInputStream());11
      Scanner in      = new Scanner(System.in);12
    ) {13
      Log.printf("Connected to server %s:%d\n", client.getInetAddress(), client.getPort());14
      Log.print("Enter your request, then press <Enter>: ");15
      String request = in.nextLine();16
      req.println(request);17
 18
      String response = res.nextLine();19
      Log.print("The response is: ");20
      Log.println(response);21
    } catch (Exception e) {22
      Log.println(e);23
    } finally {24
      Log.println("Client connection closed.");25
    }26
  }27
}28

    int port = 0;
    InetAddress host = InetAddress.getLocalHost(); // .getLoopbackAddress();
    try (ServerSocket server = new ServerSocket(port, 0, host)) {
      Log.printf("Server listening on %s:%d\n", server.getInetAddress(), server.getLocalPor

/** Usage: java TCPServer */1
public class TCPServer extends Thread {2
  // ...3
  public static void main(String[] args) throws Exception {4

5
6
7
8

      while (true) {9
        (new TCPServer(server.accept())).start();10
      }11
    }12
  }13
  public void run() {14
    Log.printf("Connected to %s:%d\n", client.getInetAddress(), client.getPort());15
 16
    try (17
      Socket client   = this.client; // Ensures client connection will be closed by try-sta18
      Scanner req     = new Scanner(client.getInputStream());19
      PrintStream res = new PrintStream(client.getOutputStream(), true);20
    ) {21
      String response;22
      String request = req.nextLine();23
 24
      if (validateRequest(request)) {25
        response = handleRequest(request);26
      } else {27
        response = "Don't understand: " + request;28
      }29
      res.println(response);30
    } catch (Exception e) {31
      Log.println(e);32
    } finally {33
      Log.printf("Disconnected from %s:%d\n", client.getInetAddress(), client.getPort());34
    }35
  }36
}37

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 22

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


TCP CLIENT & SERVER
Client start connection to the server.  Server accepts the connection from the client.

      Socket client   = new Socket(args[0], Integer.parseInt(args[1])); // Socket(host, por

      Log.printf("Connected to server %s:%d\n", client.getInetAddress(), client.getPort());

/** Usage: java TCPClient <host> <port> */1
public class TCPClient {2
  private static PrintStream Log = System.out;3
  private static void validateArgs(String[] args) { ... }4
  public static void main(String[] args) throws Exception {5
    validateArgs(args);6
 7
    try (8

9
      PrintStream req = new PrintStream(client.getOutputStream(), true);10
      Scanner res     = new Scanner(client.getInputStream());11
      Scanner in      = new Scanner(System.in);12
    ) {13

14
      Log.print("Enter your request, then press <Enter>: ");15
      String request = in.nextLine();16
      req.println(request);17
 18
      String response = res.nextLine();19
      Log.print("The response is: ");20
      Log.println(response);21
    } catch (Exception e) {22
      Log.println(e);23
    } finally {24
      Log.println("Client connection closed.");25
    }26
  }27
}28

        (new TCPServer(server.accept())).start();

    Log.printf("Connected to %s:%d\n", client.getInetAddress(), client.getPort());

/** Usage: java TCPServer */1
public class TCPServer extends Thread {2
  // ...3
  public static void main(String[] args) throws Exception {4
    int port = 0;5
    InetAddress host = InetAddress.getLocalHost(); // .getLoopbackAddress();6
    try (ServerSocket server = new ServerSocket(port, 0, host)) {7
      Log.printf("Server listening on %s:%d\n", server.getInetAddress(), server.getLocalPor8
      while (true) {9

10
      }11
    }12
  }13
  public void run() {14

15
 16
    try (17
      Socket client   = this.client; // Ensures client connection will be closed by try-sta18
      Scanner req     = new Scanner(client.getInputStream());19
      PrintStream res = new PrintStream(client.getOutputStream(), true);20
    ) {21
      String response;22
      String request = req.nextLine();23
 24
      if (validateRequest(request)) {25
        response = handleRequest(request);26
      } else {27
        response = "Don't understand: " + request;28
      }29
      res.println(response);30
    } catch (Exception e) {31
      Log.println(e);32
    } finally {33
      Log.printf("Disconnected from %s:%d\n", client.getInetAddress(), client.getPort());34
    }35
  }36
}37

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 22

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


TCP CLIENT & SERVER
Client forms a request and sends it to the server.  Server reads the request from the client.

      PrintStream req = new PrintStream(client.getOutputStream(), true);

      Log.printf("Connected to server %s:%d\n", client.getInetAddress(), client.getPort());
      Log.print("Enter your request, then press <Enter>: ");
      String request = in.nextLine();
      req.println(request);

/** Usage: java TCPClient <host> <port> */1
public class TCPClient {2
  private static PrintStream Log = System.out;3
  private static void validateArgs(String[] args) { ... }4
  public static void main(String[] args) throws Exception {5
    validateArgs(args);6
 7
    try (8
      Socket client   = new Socket(args[0], Integer.parseInt(args[1])); // Socket(host, por9

10
      Scanner res     = new Scanner(client.getInputStream());11
      Scanner in      = new Scanner(System.in);12
    ) {13

14
15
16
17

 18
      String response = res.nextLine();19
      Log.print("The response is: ");20
      Log.println(response);21
    } catch (Exception e) {22
      Log.println(e);23
    } finally {24
      Log.println("Client connection closed.");25
    }26
  }27
}28

      Scanner req     = new Scanner(client.getInputStream());

      String request = req.nextLine();

/** Usage: java TCPServer */1
public class TCPServer extends Thread {2
  // ...3
  public static void main(String[] args) throws Exception {4
    int port = 0;5
    InetAddress host = InetAddress.getLocalHost(); // .getLoopbackAddress();6
    try (ServerSocket server = new ServerSocket(port, 0, host)) {7
      Log.printf("Server listening on %s:%d\n", server.getInetAddress(), server.getLocalPor8
      while (true) {9
        (new TCPServer(server.accept())).start();10
      }11
    }12
  }13
  public void run() {14
    Log.printf("Connected to %s:%d\n", client.getInetAddress(), client.getPort());15
 16
    try (17
      Socket client   = this.client; // Ensures client connection will be closed by try-sta18

19
      PrintStream res = new PrintStream(client.getOutputStream(), true);20
    ) {21
      String response;22

23
 24
      if (validateRequest(request)) {25
        response = handleRequest(request);26
      } else {27
        response = "Don't understand: " + request;28
      }29
      res.println(response);30
    } catch (Exception e) {31
      Log.println(e);32
    } finally {33
      Log.printf("Disconnected from %s:%d\n", client.getInetAddress(), client.getPort());34
    }35
  }36
}37

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 22

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


TCP CLIENT & SERVER
Server validates and processes request and forms a response.

 

/** Usage: java TCPClient <host> <port> */1
public class TCPClient {2
  private static PrintStream Log = System.out;3
  private static void validateArgs(String[] args) { ... }4
  public static void main(String[] args) throws Exception {5
    validateArgs(args);6
 7
    try (8
      Socket client   = new Socket(args[0], Integer.parseInt(args[1])); // Socket(host, por9
      PrintStream req = new PrintStream(client.getOutputStream(), true);10
      Scanner res     = new Scanner(client.getInputStream());11
      Scanner in      = new Scanner(System.in);12
    ) {13
      Log.printf("Connected to server %s:%d\n", client.getInetAddress(), client.getPort());14
      Log.print("Enter your request, then press <Enter>: ");15
      String request = in.nextLine();16
      req.println(request);17

18
      String response = res.nextLine();19
      Log.print("The response is: ");20
      Log.println(response);21
    } catch (Exception e) {22
      Log.println(e);23
    } finally {24
      Log.println("Client connection closed.");25
    }26
  }27
}28

      if (validateRequest(request)) {
        response = handleRequest(request);
      } else {
        response = "Don't understand: " + request;
      }

/** Usage: java TCPServer */1
public class TCPServer extends Thread {2
  // ...3
  public static void main(String[] args) throws Exception {4
    int port = 0;5
    InetAddress host = InetAddress.getLocalHost(); // .getLoopbackAddress();6
    try (ServerSocket server = new ServerSocket(port, 0, host)) {7
      Log.printf("Server listening on %s:%d\n", server.getInetAddress(), server.getLocalPor8
      while (true) {9
        (new TCPServer(server.accept())).start();10
      }11
    }12
  }13
  public void run() {14
    Log.printf("Connected to %s:%d\n", client.getInetAddress(), client.getPort());15
 16
    try (17
      Socket client   = this.client; // Ensures client connection will be closed by try-sta18
      Scanner req     = new Scanner(client.getInputStream());19
      PrintStream res = new PrintStream(client.getOutputStream(), true);20
    ) {21
      String response;22
      String request = req.nextLine();23
 24

25
26
27
28
29

      res.println(response);30
    } catch (Exception e) {31
      Log.println(e);32
    } finally {33
      Log.printf("Disconnected from %s:%d\n", client.getInetAddress(), client.getPort());34
    }35
  }36
}37

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 22

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


TCP CLIENT & SERVER
Client receives the response from the server.  Server sends the response to the client.

      Scanner res     = new Scanner(client.getInputStream());

      String response = res.nextLine();

/** Usage: java TCPClient <host> <port> */1
public class TCPClient {2
  private static PrintStream Log = System.out;3
  private static void validateArgs(String[] args) { ... }4
  public static void main(String[] args) throws Exception {5
    validateArgs(args);6
 7
    try (8
      Socket client   = new Socket(args[0], Integer.parseInt(args[1])); // Socket(host, por9
      PrintStream req = new PrintStream(client.getOutputStream(), true);10

11
      Scanner in      = new Scanner(System.in);12
    ) {13
      Log.printf("Connected to server %s:%d\n", client.getInetAddress(), client.getPort());14
      Log.print("Enter your request, then press <Enter>: ");15
      String request = in.nextLine();16
      req.println(request);17
 18

19
      Log.print("The response is: ");20
      Log.println(response);21
    } catch (Exception e) {22
      Log.println(e);23
    } finally {24
      Log.println("Client connection closed.");25
    }26
  }27
}28

      PrintStream res = new PrintStream(client.getOutputStream(), true);

      res.println(response);

/** Usage: java TCPServer */1
public class TCPServer extends Thread {2
  // ...3
  public static void main(String[] args) throws Exception {4
    int port = 0;5
    InetAddress host = InetAddress.getLocalHost(); // .getLoopbackAddress();6
    try (ServerSocket server = new ServerSocket(port, 0, host)) {7
      Log.printf("Server listening on %s:%d\n", server.getInetAddress(), server.getLocalPor8
      while (true) {9
        (new TCPServer(server.accept())).start();10
      }11
    }12
  }13
  public void run() {14
    Log.printf("Connected to %s:%d\n", client.getInetAddress(), client.getPort());15
 16
    try (17
      Socket client   = this.client; // Ensures client connection will be closed by try-sta18
      Scanner req     = new Scanner(client.getInputStream());19

20
    ) {21
      String response;22
      String request = req.nextLine();23
 24
      if (validateRequest(request)) {25
        response = handleRequest(request);26
      } else {27
        response = "Don't understand: " + request;28
      }29

30
    } catch (Exception e) {31
      Log.println(e);32
    } finally {33
      Log.printf("Disconnected from %s:%d\n", client.getInetAddress(), client.getPort());34
    }35
  }36
}37

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 22

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


TCP CLIENT & SERVER
Client closes connection with the server. Server closes connection with the client.

      Log.println("Client connection closed.");

/** Usage: java TCPClient <host> <port> */1
public class TCPClient {2
  private static PrintStream Log = System.out;3
  private static void validateArgs(String[] args) { ... }4
  public static void main(String[] args) throws Exception {5
    validateArgs(args);6
 7
    try (8
      Socket client   = new Socket(args[0], Integer.parseInt(args[1])); // Socket(host, por9
      PrintStream req = new PrintStream(client.getOutputStream(), true);10
      Scanner res     = new Scanner(client.getInputStream());11
      Scanner in      = new Scanner(System.in);12
    ) {13
      Log.printf("Connected to server %s:%d\n", client.getInetAddress(), client.getPort());14
      Log.print("Enter your request, then press <Enter>: ");15
      String request = in.nextLine();16
      req.println(request);17
 18
      String response = res.nextLine();19
      Log.print("The response is: ");20
      Log.println(response);21
    } catch (Exception e) {22
      Log.println(e);23
    } finally {24

25
    }26
  }27
}28

      Log.printf("Disconnected from %s:%d\n", client.getInetAddress(), client.getPort());

/** Usage: java TCPServer */1
public class TCPServer extends Thread {2
  // ...3
  public static void main(String[] args) throws Exception {4
    int port = 0;5
    InetAddress host = InetAddress.getLocalHost(); // .getLoopbackAddress();6
    try (ServerSocket server = new ServerSocket(port, 0, host)) {7
      Log.printf("Server listening on %s:%d\n", server.getInetAddress(), server.getLocalPor8
      while (true) {9
        (new TCPServer(server.accept())).start();10
      }11
    }12
  }13
  public void run() {14
    Log.printf("Connected to %s:%d\n", client.getInetAddress(), client.getPort());15
 16
    try (17
      Socket client   = this.client; // Ensures client connection will be closed by try-sta18
      Scanner req     = new Scanner(client.getInputStream());19
      PrintStream res = new PrintStream(client.getOutputStream(), true);20
    ) {21
      String response;22
      String request = req.nextLine();23
 24
      if (validateRequest(request)) {25
        response = handleRequest(request);26
      } else {27
        response = "Don't understand: " + request;28
      }29
      res.println(response);30
    } catch (Exception e) {31
      Log.println(e);32
    } finally {33

34
    }35
  }36
}37

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 22

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


TCP CLIENT & SERVER
Server continues accepting new connection from other clients.

}

/** Usage: java TCPClient <host> <port> */1
public class TCPClient {2
  private static PrintStream Log = System.out;3
  private static void validateArgs(String[] args) { ... }4
  public static void main(String[] args) throws Exception {5
    validateArgs(args);6
 7
    try (8
      Socket client   = new Socket(args[0], Integer.parseInt(args[1])); // Socket(host, por9
      PrintStream req = new PrintStream(client.getOutputStream(), true);10
      Scanner res     = new Scanner(client.getInputStream());11
      Scanner in      = new Scanner(System.in);12
    ) {13
      Log.printf("Connected to server %s:%d\n", client.getInetAddress(), client.getPort());14
      Log.print("Enter your request, then press <Enter>: ");15
      String request = in.nextLine();16
      req.println(request);17
 18
      String response = res.nextLine();19
      Log.print("The response is: ");20
      Log.println(response);21
    } catch (Exception e) {22
      Log.println(e);23
    } finally {24
      Log.println("Client connection closed.");25
    }26
  }27

28

      while (true) {
        (new TCPServer(server.accept())).start();
      }

/** Usage: java TCPServer */1
public class TCPServer extends Thread {2
  // ...3
  public static void main(String[] args) throws Exception {4
    int port = 0;5
    InetAddress host = InetAddress.getLocalHost(); // .getLoopbackAddress();6
    try (ServerSocket server = new ServerSocket(port, 0, host)) {7
      Log.printf("Server listening on %s:%d\n", server.getInetAddress(), server.getLocalPor8

9
10
11

    }12
  }13
  public void run() {14
    Log.printf("Connected to %s:%d\n", client.getInetAddress(), client.getPort());15
 16
    try (17
      Socket client   = this.client; // Ensures client connection will be closed by try-sta18
      Scanner req     = new Scanner(client.getInputStream());19
      PrintStream res = new PrintStream(client.getOutputStream(), true);20
    ) {21
      String response;22
      String request = req.nextLine();23
 24
      if (validateRequest(request)) {25
        response = handleRequest(request);26
      } else {27
        response = "Don't understand: " + request;28
      }29
      res.println(response);30
    } catch (Exception e) {31
      Log.println(e);32
    } finally {33
      Log.printf("Disconnected from %s:%d\n", client.getInetAddress(), client.getPort());34
    }35
  }36
}37

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 22

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/


This slide is intentionally le� blank.
Return to .Course Page

Microservices - EECS 4413Microservices - EECS 4413 24 September 202124 September 2021

Copyright © 2021 Vincent Chu. Course materials based on and used with permission from Copyright © 2021 Vincent Chu. Course materials based on and used with permission from ..Professor Hamzeh RoumaniProfessor Hamzeh Roumani 23

https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/schedule
https://www.eecs.yorku.ca/course_archive/2021-22/F/4413/
https://www.eecs.yorku.ca/~roumani/

