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“It is very difficult indeed to find programs
which have been proven correct, and those
which are are hailed like freaks in a circus.”
[Leith, 1990]

 0. INTRODUCTION

This text explores the problem of verifying software in terms of a set of simple
tools which can be used to symbolically evaluate and prove properties  of pieces of
programs, represented either abstractly in functional terms, or by actual text.  The tools
can be thought of as roughly analogous to spelling and style checkers in word-processing;
they reduce the labor of finding errors and provide some semi-automated aids to making
corrections.  Like the spelling and style checkers, the use of software verification tools
cannot guarantee the absence of errors but they can block certain kinds of errors, and
sometimes they can go further by allowing the programmer to derive parts of a program
automatically from logical specifications.  These specifications  provide a representation
of the program’s intended meaning or goal; they say what the program is supposed to do
rather than how it is to do it. Thus they are easier to understand than the details of the
program itself, and can be directly accepted or rejected depending on whether they
match or fail to match the requirements of the program’s users.

Just as a spelling checker cannot help a writer find something meaningful to say, so
verification tools cannot help with the most important aspects of program construction:
what exactly is the program supposed to do? what resources  are to be used?  To answer these
questions effectively requires an understanding which we cannot expect from a software
tool, but the use of the tool can reduce the most immediate sources of errors—mistakes
and misunderstandings in the low-level logic, which will not be caught by the compiler
and which may indeed go undetected for many executions of the program, until the day
arrives with just the right conditions to trigger a “crash”.

0.1 Why do we need software verification tools?

Software errors are expensive. It has been estimated that in North America
perhaps $3 billion a year  is lost in “crashes”, with the average cost of a major outage
running at $330,0001.  The airlines estimate that every minute a reservation system is
down costs $70,000.  But the error rate in programming resists any significant reduction:
error estimates for programmers are thought to be about 50 errors for every 1000 lines of
code (regardless of programming language), with fully tested market versions running
about 3 errors/1000 lines.  (Programs written in high-level languages are much shorter
than equivalent low-level code, so a high-level language is a much safer programming
tool than a low-level language would be; but, at the same time, the use of high-level
languages makes feasible the development of much larger, more complex programs than
could be attempted with low-level languages, so the error rate/program does not
necessarily decrease.)

1“It has been reported that British businesses suffer around 30 major mishaps a year, involving
losses of millions of pounds. The cost of software failures alone in the UK is conservatively
estimated at $900 million per year .”  [Forester, 1992]
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We present a few examples of major software errors to illustrate the very serious
consequences which can arise from the smallest of errors in program logic, and the value
to be attached to verification tools if they are able to reduce the number of such failures:

The Bank of New York disaster

The following article describes a famous computer “foul-up” triggered by a
simple programming error—using a 2-byte counter for the number of messages waiting.
The counter had a maximum value of +32,767; adding 1 to this maximum value
produced a value which was interpreted by the software as a 0, indicating no messages
(in this case, orders for bond trades) were waiting!  Note how the original software error
became compounded into a further more disastrous error, and the complex way the error
effected the environment of interest rates and bond sales.

Quoted from an article on the risks mailing list, now run as the comp.risks Usenet
newsgroup:

 “Date: Fri 29 Nov 85 00:43:47-EST
. . . .
From the Wall Street Journal, Monday 25 November 1985 [quoted without permission],
A Computer Snafu Snarls the Handling of Treasury Issues by Phillip L. Zweig and Allanna
Sullivan Staff reporters of the Wall Street Journal

NEW YORK- A computer malfunction at Bank of New York brought the Treasury bond
market's deliveries and payments systems to a near- standstill for almost 28 hours Thursday
and Friday.  . . . .The foul-up temporarily prevented the bank, the nation's largest clearer of
government securities, from delivering securities to buyers and making payments to sellers . .
. The malfunction was cleared up at 12:30 p.m. EST Friday, and an hour later the bank
resumed delivery of securities.

But Thursday the bank, a unit of Bank of New York Co., had to borrow a record $20 billion from
the Federal Reserve Bank of New York so it could pay for securities received. The borrowing
is said to be the largest discount window borrowing ever from the Federal Reserve System.
Bank of New York repaid the loan Friday, Martha Dinnerstein, a senior vice president, said. . . .
Bank of New York said that it had paid for the cost of carrying the securities so its customers
wouldn't lose any interest.  Bank of New York's inability to accept payments temporarily left
other banks with $20 billion on their hands. This diminished the need of many banks to
borrow from others in the federal funds market. Banks use the market for federal funds, which
are reserves that banks lend each other, for short-term funding of certain operations. The
cash glut caused the federal funds rate to plummet to 5.5% from 8.375% early Thursday.

. . . According to Wall Street sources, the malfunction occurred at 10 a.m. Thursday as Bank of
New York was preparing to change software in a computer system and begin the days
operations. Until Friday afternoon, Bank of New York received billions of dollars in securities
that it couldn't deliver to buyers. The Fed settlement system, which officially closes at 2:30
p.m., remained open until 1:30 a.m. Friday in the expectation that technicians would be able
to solve the problem.

. . .  it seems that the primary error occurred in a messaging system which buffered messages
going in and out of the bank. The actual error was an overflow in a counter which was only 16
bits wide, instead of the usual 32. This caused a message database to become corrupted.
The programmers and operators, working under tremendous pressure to solve the problem
quickly, accidentally copied the corrupt copy of the database over the backup, instead of the
other way around.”
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The all-time most expensive single-character error?

Quoted from comp.risks:

Date: Sat 10 Sep 88 15:22:49-PDT
From: Gary Kremen (The Arb) <89.KREMEN@GSB-HOW.Stanford.EDU> Subject: Soviets
See Little Hope of Controlling Spacecraft

According to today's (Saturday, September 10, 1988) New York Times, the Soviets lost their
Phobos I spacecraft after it tumbled in orbit and the solar cells lost power. The tumbling was
caused when a ground controller gave it an improper command.  This has to one of the most
expensive system mistakes ever. [estimated at $100,000,000]

Date: Tue, 13 Sep 88 15:20:18 PDT
From: Peter G. Neumann <Neumann@KL.SRI.COM>
Subject: Soviet Mars Probe

The Soviet Mars probe was mistakenly ordered to ‘commit suicide’ when ground control
beamed up a 20 to 30 page message in which a single character was inadvertently omitted.
The change in program was required because the Phobos 1 control had been transferred
from a command center in the Crimea to a new facility near Moscow. ‘The [changes] would not
have been required if the controller had been working the computer in Crimea.’ The
commands caused the spacecraft's solar panels to point the wrong way, which would prevent
the batteries from staying charged, ultimately causing the spacecraft to run out of power.

[From the SF Chronicle, 10 Sept 88, item (page A11), thanks to Jack Goldberg.]

The Ariane 5 failure

Quoted from the report of the Ariane Inquiry Board [Lions, 1996]:

“On 4 June 1996, the maiden flight of the Ariane 5 launcher ended in a failure. Only about 40
seconds after initiation of the flight sequence, at an altitude of about 3700 m, the launcher
veered off its flight path, broke up and exploded.  ,. . . .  The reason why the active SRI 2 did
not send correct attitude data was that the unit had declared a failure due to a software
exception.  . . .The data conversion instructions (in Ada code) were not protected from
causing an Operand Error, although other conversions of comparable variables in the same
place in the code were protected.  . . .

An underlying theme in the development of Ariane 5 is the bias towards the mitigation of
random failure. . . The exception was detected, but inappropriately handled because the view
had been taken that software should be considered correct until it is shown to be at fault. The
Board has reason to believe that this view is also accepted in other areas of Ariane 5 software
design. The Board is in favour of the opposite view, that software should be assumed to be
faulty until applying the currently accepted best practice methods can demonstrate that it is
correct.
. . . .
R5  . . . .Identify all implicit assumptions made by the code and its justification documents on
the values of quantities provided by the equipment.
. . .
Verify the range of values taken by any internal or communication variables in the software.”

Version 1/12/00
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The Phobos and Ariane failures demonstrate two important lessons:

• code cannot be trusted just because it worked in a different context ;

• there is no connection between the scope of the error and the cost of the
resulting failure.

Of the many recommendations made by the Ariane Inquiry Board, two are directly
relevant to the issue of verification. As we shall see, identifying implicit assumptions and
verifying ranges of values are both problems for which our verification tools can help.

Millions inconvenienced, millions paid in compensation

The following report shows how obscure the source of a major software crash can be,
and how unconvincing the inevitable claims are that everything possible is being done to
prevent the re-occurrence of such errors. Dijkstra’s famous dictum says it all: Testing can
be a very effective way to show the presence of bugs, but it is hopelessly inadequate for showing
their absence, never their absence.  [Dijkstra, 1972.]  And Weinberg’s mottoes sharpen the
point:

"There's always one more bug, even after that one is removed."

"An ounce of prevention is worth a pound of cure, but management won't pay a penny
for it."  [Weinberg, 1982, p. 83]

Quoted from comp.dcom.telecom:

 Subject: AT&T Crash Statement: The Official Report
Technical background on AT&T's network slowdown, January 15, 1990

At approximately 2:30 p.m. EST on Monday, January 15, one of AT&T's 4ESS toll switching
systems in New York City experienced a minor hardware problem . . . This required the switch
to briefly suspend new call processing until it completed its fault recovery action -- a four-to-six
second procedure.

. . . messages were automatically sent to connecting 4ESS switches requesting that no new
calls be sent to this New York switch during this . . . interval. The switches receiving this
message made a notation  to show that the switch was temporarily out of service.

When the New York switch in question was ready to resume call processing a few seconds
later, it sent out call attempts (known as IAMs - Initial Address Messages) to its connecting
switches. When these switches started seeing call attempts from New York, they started
making adjustments to their programs to recognize that New York was once again up-and-
running, and therefore able to receive new calls.

A processor in the 4ESS switch which links that switch to the CCS7 network holds the status
information mentioned above. When this processor (called a Direct Link Node, or DLN) in a
connecting switch received the first call attempt (IAM) from the previously out-of-service New
York switch, it initiated a process to update its status map. As the result of a software flaw, this
DLN processor was left vulnerable to disruption for several seconds. During this vulnerable
time, the receipt of two call attempts from the New York switch -- within an interval of 1/100th of
a second -- caused some data to become damaged. The DLN processor was then taken out
of service to be reinitialized.
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Since the DLN processor is duplicated, its mate took over the traffic load. However, a second
couplet of closely spaced new call messages . . hit the mate processor during the vulnerable
period, causing it to be removed from service and temporarily isolating the switch from the
CCS7 signaling network. The effect cascaded through the network as. . .other switches
similarly went out of service. The unstable condition continued because of the random nature
of the failures and the constant pressure of the traffic load in the network providing the call-
message triggers.

The software flaw was inadvertently introduced into all the 4ESS switches . . .as part of a mid-
December software update. This update was intended to significantly improve the network's
performance by making it possible for switching systems to access a backup signaling network
more quickly in case of problems with the main CCS7 signaling network. While the software
had been rigorously tested in laboratory environments before it was introduced, the unique
combination of events that led to this problem couldn't be predicted.   .  . .

On Tuesday, we took the faulty program update out . . and temporarily switched back to the
previous program. . . We have since corrected the flaw, tested the change and restored the
backup signaling links. We believe the software design, development and testing processes
we use are based on solid, quality foundations. All future releases of software will continue to
be rigorously tested. We will use the experience we've gained through this problem to further
improve our procedures.

. . . Although nothing can be guaranteed 100% of the time, what happened Monday was a
series of events that had never occurred before. With ongoing improvements to our design
and delivery processes, we will continue to drive the probability of this type of incident
occurring towards zero.

The AT&T system failure was triggered by a system upgrade. This is a very common
hazard. It is quite difficult to establish through prior testing that an upgrade to a
complex systems will not have an unexpected and possibly disastrous effect—as in a
recent incident at the Canadian Bank of Commerce, which for two days could not
record deposits or payments  through its automatic teller machines because, as a
newspaper report had it, "attempts by the bank to improve one of their computer
systems caused problems with another system, throwing everything out of whack."
[Globe & Mail, May  2, 1998].

Testing is not proof

The AT&T report implicitly connects confidence in the correct functioning of its software
with the quality of  its testing procedures.  For some, testing is even confused with
proving correctness as illustrated by the following posting to comp.risks:

Date: Fri, 18 Jul 1997 14:10:53 -0400 (EDT)
From: "Daniel P. B. Smith" <dpbsmith@world.std.com>
Subject: Unique definition of "proof of correctness"

*Computer Design*, July 1997, p. 38, describes the IDT-C6, a
Pentium-compatible microprocessor designed by Centaur Technology.  "IDT
claims to have tested the C6 with most modern PC operating systems,
including Windows 95, Windows 3.1, NetWare, and Solaris for Intel. _The
complexity and pervasiveness of the Windows operating system generally are
considered to make up an exacting proof of correctness..._" [emphasis
supplied]

Give up, folks... the marketers have won.  Once they redefine a term, the engineers _never_
win it back...

Version 1/12/00
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As we shall see in this text, proofs of correctness are constructed by the application of
logic and mathematics to the structure of the program code, not its behaviour when run
in a particular environment with particular data. Proof of correctness, i. e., verification,
does not involve testing and achieves quite different results.

0.2 Life-threatening software errors

Programmer error in air traffic control software

In the following example [Lamb, 1988], failure to allow for negative values could
have had fatal consequences. (Points east of  0° longitude—which is, by definition, the
meridian passing through the Royal Observatory at Greenwich, England—can be
specified by negative longitudes.  In this case, the program apparently ignored the sign of
the longitude value.)  The program in question was used for air traffic control in the
London (England) area by the Civil Aviation Authority (CAA):

 “One of the more startling problems concerned the program's handling of the Greenwich
meridian. The National Airspace Package, designed by IBM's Federal Systems division,
contains a model of the airspace it controls, that is, a map of the airlanes and beacons in the
area. But, because the program was designed for air traffic control centres in the US, the
designers had taken no account of a zero longitude; the deficiency caused the computer to
fold its map of Britain in two at the Greenwich meridian, plonking Norwich on top of
Birmingham. . . .

It’s axiomatic that software has bugs in it.” said Stan Price.  He bought the software for the
CAA but is critical of the CAA’s failure to use the latest techniques for producing software.
Techniques that are lacking, notes Price, include the use of formal methodologies for
designing and writing software.”
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Ambulance Dispatch System failure

In November 1992, the computerized dispatch system for the London (England)
Ambulance  Service, broke down suddenly and “locked up altogether”, leaving calls for
assistance which had already been stored in the system unavailable, and forcing a taxing
and cumbersome return to a manual, paper-based dispatch system.  Luckily, the
breakdown occurred in early morning hours, so that there were no severe consequences
for patients.

The cause of the breakdown? Quoting from the subsequent inquiry report [“Report”,
1993]:

4039 The  Inquiry Team has concluded that the system crash was caused by a minor
programming error. In carrying out some work on the system some three weeks previously the
SO programmer had inadvertently left in memory a piece of program code that caused a small
amount of memory within the file server to be used up and not released every time a vehicle
mobilization was generated by the system.  Over a three week period these activities had
gradually used up all available memory thus causing the system to crash.  This programming
error should not have occurred and was caused by carelessness and lack of quality assurance
of program code changes. Given the nature of the fault it is unlikely that it would have been
detected through conventional programmer or user testing.

Software that kills

It is remarkable that even the largest and most sophisticated corporations, such
as AT&T, which stand to lose so much financially from defective software have invested
so little in effective verification tools, but it is even more remarkable that software on
which people depend on for their lives (such as the software  used to control of the
latest “fly-by-wire” models of passenger planes2) is often written using low-level
programming techniques known to be prone to error, as well as being very difficult to
debug, while at  the same time more and more reliance is placed on software-based
safety mechanisms rather than on simpler but more reliable  hardware guards and
interlocks.  As Robert Baber has remarked, “developing in the traditional way software
upon  which human life depends is nothing other than high tech Russian roulette.”
[Baber, 1991, p. 123.]  Moser and Melliar-Smith [1990] have commented: “For systems
that must be safe, there appears to be no alternative to verification.  Testing, fault
tolerance, and fault-tree analysis can make important contributions to safety, but they
alone are unlikely to achieve the high levels of safety that are necessary for safety-critical
applications.”

A clear example of the risks of poor programming and verification techniques is the
tragic story of the Therac-25—one in a series of radiation therapy machines developed
and sold over a number of years by Atomic Energy Canada Limited (AECL).  As a
direct result of inadequate programming techniques and verification techniques, at least
six patients received massive radiation overdoses which caused great pain and suffering
and from which three died. The story is a complicated one; it is presented in
comprehensive detail in [Levenson, 1993].  A few points are noteworthy:

2 Forester and Morrison [1990] report that errors in the computer-based 'fly-by-wire' system of
the US Air Force’s Blackhawk helicopter resulted in 22 fatalities in five separate crashes.

Version 1/12/00
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The Therac-25 accidents occurred because of coding errors, not, as is more common for
software-caused accidents,   because of errors in the requirements or specifications.  The
software itself was never tested or formally analyzed at the module level; indeed, the
initial safety analysis ignored the software altogether, even though key hardware
interlocks in earlier models had been replaced by software.  Even when problems were
noticed, the investigators focused on the hardware, apparently preferring to attempt to
“fix” the hardware rather than tackle the daunting task of debugging very complex,
poorly documented and poorly structured code.

Levenson and Turner warn against simply blaming tragedies such as the Therac-25
accidents on software errors alone—they argue for a deeper analysis of “organizational,
managerial, technical” and even “political, or sociological factors” on the grounds that,
as we have already observed, there will always be another bug; so focusing only on
eliminating individual software errors may blind us to considering the larger environment
which tolerates and unintentionally furthers the occurrence of such errors with their
drastic consequences.

True enough, but one of the underlying causes of unsafe software may be the general
reluctance to apply formal methods and verification techniques, usually on the grounds
that they are too difficult to automate and hence cannot be applied to “real code”.  One
purpose of this text is to argue by example against the validity of this excuse—to show
that through the use of appropriate tools, portions of code can be verified automatically
or semi-automatically,  or can be generated automatically from logical specifications.
Just as we would expect any author who uses a word-processor to use a spelling checker
to check for at least those spelling errors which the dictionary can catch, so we should —
in the future, if not today — expect programmers to routinely check or generate their
code with software verification tools to catch and eliminate at least those errors which
the tools can prevent.   Even then programmers will not succeed in stamping out that
vexatious and stubborn “last bug”,  but at least its available hiding places will grow
smaller, and both money and lives may be saved.

0.3 Tools for logic and tools for  correctness

Two kinds of tools are discussed in this text—the first do purely logical
calculations; the second kind use the logical calculation tools to check program text for
logical correctness.

In the first category are tools which can

• test a propositional function to see if it is a tautology (theorem) in the
propositional calculus;

• solve some logic puzzles and word problems automatically when they are
translated into an appropriate propositional form;

• simplify propositions involving arithmetic and logical relations into forms whose
truth or validity can be automatically checked.

In the second category are tools which
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• calculate automatically a logical description of the computation performed by a
loop-free code fragment and use this to verify the correctness of the code relative to
a goal;

• verify that a functional calculation on an instance of an abstract datatype meets
its specification;

• check that the conditions in a loop-free conditional statement allow all branches
to be taken;

• automatically calculate a logical description of initial conditions for a code
fragment which will cause the fragment to compute a desired final condition;

• test whether the conditions specified for a loop allow the loop to correctly
compute the desired final condition from given initial conditions.

The tools are written in the logic-programming language Prolog and use many of the
features of the Prolog interpreter for parsing input and displaying output results. The
examples shown in the text are output from versions of the tools developed in Quintus
Prolog3, running under the Solaris operating system; they require that a licensed Quintus
development system be present on the system.  The source code is available for non-
commercial purposes in ftp://ftp.cs.yorku.ca/pub/peter/SVT.

Stand-alone versions of the tools that will run under Unix or Windows are easily
generated from the Prolog source code, using SWI-Prolog4. (This is freely available under
a GPL license.) The SWI-Prolog source code is available for non-commercial purposes in
ftp://ftp.cs.yorku.ca/pub/peter/SVT/SWI/.

The reader will find some acquaintance with Prolog concepts to be helpful, but the text
is intended to be understandable and the tools are usable without any Prolog
background.

0.4 An overview of the text

The text is divided into two parts. Part I introduces the basic concepts of
propositional logic as a method of description of program states, and presents the tools
tautology (Chapter 2) and wang (Chapter 3) used to check whether a propositional
function is a tautology.  An additional tool simplify is introduced in Chapter 4 to
simplify  expressions and equalities, and this is combined with wang to produce a
simple theorem-proving tool prover which, while far from complete even for simple
arithmetic domains, is transparent and easily extensible.  Chapter 5 applies these tools
to the verification of expressions on abstract data types, and with the addition of the
induction tool, it becomes possible to verify automatically some recursive programs
expressed in a functional programming language.

In Part II, we tackle the more difficult problem of code with side-effects—code which
alters the state of the computer's memory by assigning values to variables. A more
complex application of prover is in the verification that the implementation of an
abstract datatype is correct (Chapter 6). Chapter 7 introduces the concept of

3 http://www.sics.se/isl/quintus/
4 http://www.swi.psy.uva.nl/projects/SWI-Prolog.

Version 1/12/00
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specifications and shows how we can automatically prove some properties of
specifications such as refinement relations. To give the reader a better sense of why
understanding procedural code is difficult, and its verification complex, we examine in
Chapter 8 what can be learned from symbolic execution, using the symbex tool.

The calculation of preconditions required to achieve a specification, using the wp  tool, is
introduced in Chapter 9 as an alternative to symbolic execution, and this is applied to
the verification of code containing a variety of statement types.

Here is how the logic and correctness tools are related:

wang

tautology

simplify

quants

prover

symbex

wp

induction
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1. PROPOSITIONS AND PROPOSITIONAL FUNCTIONS

Propositions are statements constructed out of  Boolean operators and phrases
which can be unambiguously assigned a value of true or false. They are used in the
process of checking code fragments to describe the state of a program at a particular
point in its computation.

The traditional Boolean operators are: not, and, or, implies  and equivalent. These are
often represented by ~, ∧, ∨, ⊃ and ≡  in logic and mathematics texts.  Other symbols
are also used, and various equivalents are found in different programming languages,  as
shown in the following table:

logic English C, Java Prolog

~, ¬ not ! \+, not

∧,  . and && ,
∨, + or || ;
⊕ xor ^
⊃, ⇒, → implies ->

if :-
=, ≡, ⇔ iff, equivalent

( iff  is an abbreviation for the bi-conditional if and only if .)

We will need to represent propositions in a consistent way using the usual alphabet of
ASCII characters available on a keyboard so that we can easily input propositions from
the keyboard or a file to a verification tool.  We will therefore use the English words not,
and, or, implies, and one piece of mathematical jargon, iff, as names for the logical
operators5.  Occasionally it is convenient to use the exclusive-or operation (“either this
or that but not both”) which we represent by the operator xor.

The simplest propositions are the Boolean constants true, false, and names such as p
which are assumed to have either true or false as their values; the next simplest are
expressions constructed from Boolean constants and names together with Boolean
operations: for example

p or (not r and  true).

In such expressions, the truth value of the entire expression is a constant determined by
the fixed Boolean values associated with each name.  Simple propositions of this sort
are rarely of much use as applied to the description of program states; but, as we shall
see, propositional  functions, as opposed to constant propositions, are indeed useful for
descriptive purposes, and that is what motivates our use of the propositional calculus in
verification.

Propositional functions are functions constructed from propositions in which the
variables are treated as the parameters of the function. Every assignment of truth values
to the variables produces a value of the function.  To distinguish this case from the

5 This approach is used in the Object Constrain Language (OCL) component of the Unified
Model Language (UML) standard, with the exception of iff which is represented by = . See
[Warmer, 1999].

Version 1/12/00



12

preceding (where the variables have some fixed value), we will write the Boolean
parameters of a propositional function with upper case letters, e. g.:

P implies (not P or R).

In this case, we do not assume that P and R have fixed values.

Propositional functions are more commonly called propositional formulae. Strictly
speaking, they should be distinguished from propositions like “Shakespeare is alive” or
“2 and 2 is 4” which have a fixed truth value. However, we will use the term proposition ,
and propositional function or propositional formula interchangeably, since the form of the
expression and the context will make clear which sense is intended.

1.1 Classifying propositional functions

A good question to ask about a propositional function is “Can it ever have the
value false?”.  (In the example above, setting P = true  and R = false  produces that
result.)

What lies behind the question is the fact that if the answer is “no, it is never false,
regardless of the values assigned to its variables”, then the function is a tautology; it is a
valid logical statement; it is a logical truth. The way the question was put suggests a
boring but workable method of calculating the answer—try successive combinations of
true and false values for the variables and for each combination, evaluate the Boolean
expression.  If the result is ever false, we know the function is not a tautology; otherwise
it is.  This is the method used by the tautology program described in Chapter 2 to
check if an input is a tautology.

As we shall see later, the question of whether a propositional function is a tautology is
sometimes worth asking with respect to parts of a program.   Suppose, for example, a
program has an IF-statement of the form

if (B) S1; else S2;

then if B is a tautology,  the statement S2 will never be executed and there is probably
an error in the statement of the condition.

The concept of a contradiction is also useful; a contradiction is a propositional function
which is never true, hence

• the negation of a contradiction is a tautology,
• the negation of a tautology is a contradiction.

A propositional function which is not a contradiction is called satisfiable since it is at
least sometimes true—it has the value true for some assignment of Boolean values to its
variables.

Propositional functions which are neither tautologies nor contradictions are called
contingent; for some values of their variables, they are true and for others, they are
false.

In any conditional statement



PROPOSITIONS_________________________________________________________ 13

if (B)  . . .

the condition B should be contingent, for if it isn't, we don’t need a conditional at all.
When B is a tautology,  we can just delete the if (B) and the else clause, if present.
If B is a contradiction, we can delete the if (B) and the statement which follows it—in
either case the computation performed by the statement is unaffected6.

To classify a propositional function as a contradiction, satisfiable, or contingent, we
need only a method to check for tautology.  It can be used to check for the other
properties as follows:

• P is a contradiction if not P is a tautology;

• P is satisfiable if not P is not a tautology;

• P is contingent if neither P nor not P are tautologies.

This gives us a first small taste of a method for checking a logical property of a piece of
code— extract the conditional expression C from a conditional statement and apply a
method for checking tautologies to both C  and not C .

Verification scenarios

To make it easier to keep track of the various forms of verification which we will
develop in subsequent chapters, we introduce a template for describing compactly what
gets verified in a particular verification “scenario” and how:

title: a verification task

context: the type of situation to which the task applies

method: the tools and technique for carrying out the task

background: assumptions or additional knowledge used in the task

For the case of conditional expressions, the scenario can be summarized as follows:

check whether the condition in a conditional statement is dispensable.

context: if (B) S1 else S2

method: test whether either B or not B is a tautology.
background: B is a Boolean expression whose evaluation has no side-effects on
either S1 or S2.

Our next verification scenario will show up in Chapter 5; the intervening chapters
develop the logical tools which will be needed.

6 This assumes  that the evaluation of B has no side effect on the state of the program.
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2. A TAUTOLOGY CHECKER

2.1 Invoking the tautology program

The program tautology checks propositional functions to see if they are valid
(tautologies) or invalid  (non-tautologies.)   To run the program, we construct a data file
containing propositional formulae constructed from variable names beginning with
upper-case letters, the words true and false, the operators7 not, and, or,
xor, implies, iff, and parentheses.  Each formula must end with a period (full
stop).

Here is a sample data file:

false implies A.
A or B.
This or That.
A and not 2.
A or not 2.
not A or not B implies not(A and B).
false implies AnyProposition.
2.

The tautology program is invoked with a command of the form

            %tautology

if the input is from stdin, or

%tautology < data file

The output lists each formula and reports whether it is valid or not valid.

7 The operators are listed in descending order of precedence, using the common concept of
precedence in which operators with higher precedence form sub-terms of operators with lower
precedence. (Cf. [Gries, 1981, p. 12].).  It should be noted that in some versions of Prolog,
precedence  is defined in reversed order, so that ‘+’ is said to have a higher  precedence than ‘*’.
This is a more natural definition for operators viewed as  functors of  terms, since if the term is
drawn as an inverted tree, with its principal functor at the top, the principal functor is, in this
convention, said to have higher precedence than its sub-terms. See, for example, the Quintus
Prolog Reference Manual.



PROPOSITIONS_________________________________________________________ 15

Running tautology on the previous sample data file produces the output:

% loading file /cs/home/fac2/peter/3111/tautology
% tautology loaded in module user, 0.030 sec 33,728 bytes
Version 2.4, May 14, 1998

false implies A
* Valid.

A or B
* Not valid.
* Counter-example: false or false

A or B
* Not valid.
* Counter-example: false or false

A and not 2
* Not valid.
* Counter-example: false and not 2

A or not 2
* Valid.

not A or not B implies not (A and B)
* Valid.

false implies A
* Valid.

2

!! Non-logical constant in formula.

(As a by-product of the way Prolog treats variable names, the variables in the
proposition are renamed in the output.)

If a formula is not valid, then there is some assignment of truth values to its variables
which makes it false.  In this case, tautology displays such an assignment as a counter-
example to the claim that the formula is valid.

Exercise 2.1:  Compare the fourth input  (“A and not 2”) with the last input.
Give a possible explanation for why the occurrence of the non-logical constant is
detected in the latter case but not in the former.   If you are familiar with Prolog, you
can work out the answer from the source code shown in the next section. Otherwise,
you will have to make a conjecture.
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2.2 Checking the tautology program

The tautology program uses a set of rules (written in Prolog) which specify
when a proposition is false. All possible values of true or false for the variables are tried
until an assignment is found which makes the proposition false; if none can be found,
the formula is judged to be a tautology.  If one  is found, its values are substituted into
the formula being tested to produce a counter-example.

Here are the main rules8 used by the program .

false('false').
false(not 'true').
false(P iff Q) :- false((P implies Q) and (Q implies P)).
false(P implies Q) :- false(not P or Q).
false(P or Q) :- false(P), false(Q).
false(P xor Q) :- false(not(P iff Q)).
false(P and Q) :- false(P) ; false(Q).
false(not not P) :- false(P).
false(not(P iff Q)) :- false( not(P implies Q)

or not(Q implies P)).
false(not(P implies Q)) :- false(not( not P or Q)).
false(not(P or Q)) :- false(not P and not Q).
false(not(P xor Q)):- false(P iff Q).
false(not(P and Q)) :- false(not P or not Q).

These rules can themselves be read as propositional formulae, with
‘:-’ read as ‘if’,
‘,’ read as ‘and’ ( in the rule for P or Q),
‘;’ is read as ‘or’ (in the rule for P and Q),
and false is read as ‘not’.

If the implementation of the tautology program is correct, then these rules, interpreted
as propositions, must be tautologies; if a rule was not a tautology, then there would
some case in which it was false, and it would be a logical error, in that case,  to conclude
that because the right side was true that the left-side must hold.

So the rules the program uses can themselves be checked by the program! This is
illustrated by the last formula in the sample data file given above:

not(P) or not(Q)implies not(P and Q).

which represents the rule

false(P and Q) :- false(P); false(Q).

However, using the tautology  program to check itself will not prove that it is correct; if
it were incorrect, it might well incorrectly say its rules were correct. But such self-testing
can increase our confidence in the rules, in the sense that if the program were to judge

8 The rules shown (except the one for xor)are those used in [Coelho, p. 68].
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any of them as invalid, then we would know that something was wrong — either in the
rule itself or the way it was applied.

The rules have also a less obvious property as propositions: although they are written as
implications using Prolog’s if operator :-, they correspond, in fact, to equivalences.  This
is important, for if they were not equivalences, then we could not conclude that just
because the conditions of the rule (the right-hand side) was not satisfied, the left-side
was not true. As it is, the rules used by tautology are all equivalences, so if a rule
fails because the right-side cannot be shown to be true, and no other rule applies to the
input, then the program can conclude that the input is never false, and hence is valid.

Exercise 2.2: Use tautology to check that each of the rules it uses corresponds to a
valid propositional formula.

Exercise 2.3: Use tautology to check that replacing the rule

           false(P implies Q) :- false(not P or Q)

with

     false(P implies Q) :- false(not P), false(Q)

is logically justified.

Exercise 2.4: Use tautology to show that  the rule

           false(not(P xor Q)):- false(P implies Q).

is valid as a propositional formula, but is not usable as a replacement for the existing
rule for not(P xor Q).

Exercise 2.5:  Could

     false(P and Q) :-  false(P); false(Q).

be replaced by  the two rules:

     false(P and Q) :-  false(P).
  false(P and Q) :-  false(Q).

(each of which is a tautology) ?  Discuss.

2.3 Applications of tautology checking

Many texts on software verification give exercises in which students are asked to
compute (by hand) whether or not various propositional functions are tautologies.  With
a tool such as the tautology program, the exercise becomes simply a matter of
preparing the input correctly. This may require familiarizing oneself with the author’s
choice of logical notation.
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Examples of different notations are:

(a) (P ∧ (Q → P)) → P
from [Chang, 1973, p. 24].

(b) (E1 = E2) = (E1 ⇒ E2) ∧ (E2 ⇒ E1)
from [Gries,  1981, p. 20].

(c) (a ⇒ ¬a) ⇒ ¬a
from [Hehner, 1988, p. 37].

(Note that tautology requires variable names to begin with upper-case letters.)

(d) [(p and q ⇒ r)  and (p and not q ⇒ s)]  ≡ [p  ⇒ (q ⇒ r) and (not q ⇒ s)]
from [Backhouse, 1986, p. 40].

(Note that ‘[ ]’ are not allowable characters in propositional formulae to be input to
tautology. You also need to know that Backhouse uses  ‘A ≡ B’ in a somewhat
unusual way to mean that A ⇔ B  is a tautology.)

(e) Here is a ‘frightful sentence’ from [Manna and Waldinger, 1985, p. 63] whose
validity can checked quite quickly by tautology once we have figured out how to
input it in a form the program will accept:

 if  ((if  P1 then (P2 or P3) else (P3 or P4))
and

        (if P3 then (not P6) else (if P4 then P1))
            and
        not (P2 and P5) and  (if P2 then P5)))
then not (if P3 then P6).

(f) Some logic exercises require that the variables in a proposition be assigned
specific Boolean values.  For example, [Backhouse, 1986, p. 29] asks the student to
evaluate the truth-value of the proposition:

X and not (not Y or Z) ⇒ X and Z

under the assumption that “X and Y have the value T and Z has the value F”.  We
can use tautology to do this evaluation by rewriting  ⇒ as implies, and replacing
the variables with the appropriate values true and false. If the result is “valid”,
the truth-value of the formula is true, otherwise false.

(g) F or G is equivalent to G if F is unsatisfiable [Lewis, p. 403].

In order to test this, you will have to construct a proposition from it. To do that, you
have to decide whether the “if” should be part of the proposition, what the scope of
the “equivalent to” should be, and how to represent unsatisfiability in propositional
terms.

Exercise 2.6: Use tautology to check that whether each of the above examples is a
tautology.
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Exercise 2.7: Use tautology  to determine whether each of the following is a
tautology, a contradiction, or contingent, (The notation varies in each formula.) .
  ((a → b)  → c)  = (a → (b → c))
  (a ≡ ( b ⊃  ¬ a)) ∧  (a ⊃ b)
  ((p ⇔  q)  ⇔   r)  ⇔    (p ⇔  (q ⇔  r))  

Checking satisfiability

As mentioned in 1.1, satisfiability is tested by showing that the negation of the
proposition in question is not a tautology (i. e. , the proposition is not a contradiction.)
If tautology fails to show that a proposition of the form not P is a contradiction,  the
list of falsifying values which it computes constitutes a valuation which satisfies P.

For example,

|: not ((A implies B) implies (B implies not C implies not
A)) .

not (A implies B implies (B implies not C implies not A))
* Not valid.
* Counter-example: not (true implies false implies (false
implies not A implies not true))

The satisfying valuation computed for

((A implies B) implies (B implies not C implies not A))

is

A = true and  B = false.

Exercise 2.8:   Explain  why tautology doesn’t assign a specific value to C in the
previous example.

Exercise 2.9: Check that the following proposition is satisfiable, and give a
satisfying valuation (with a value for each variable.)

(A ⊃ C) ⊃ ((B ⊃ D) ⊃ ((A ∨ B) ⊃ C))

2.4 Translating from English to logic

Another kind of exercise in logic involves translating an English sentence into an
equivalent  propositional form and determining its validity.  The trick here is to find the
logical connectives in the sentence and the pieces which they connect.  Pieces which
contain no connective are treated as variables and replaced by capital letters.
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For example, a problem due to R. Smullyan and given in [Manna 1980, p. 64] asks:

Given that the following are true: “I love Pat, or I love Quincy” and “If I love Pat,
then I love Quincy”, does it follow that I love Pat? Does it follow that I love
Quincy?

Let us take ‘it follows that’ to mean  ‘the preceding implies that’.  Then if we represent “I
love Pat” by P, and “I love Quincy” by Q, the problem can be translated into the
following questions:

Does  (P or Q) and (P implies Q) imply P ?
Does  (P or Q) and (P implies Q) imply Q?

That is to say, are the propositions

(P or Q) and (P implies Q) implies P
and

(P or Q) and (P implies Q) implies Q

always true?  The question is now in a form which tautology  can answer.

Exercise 2.10: “Either the program terminates or the value of n is never zero.  If the
value of n is eventually zero then the value of m will also be zero.  The program does
terminate. Therefore the value of m will eventually be zero.”

Construct a propositional formula which is logically equivalent to the above
sentences, treating “either . . or” as an exclusive-or (xor). Use tautology to check
whether the formula is valid.  Show that the implication that m will eventually be
zero is invalid if “either . . or” is the usual inclusive or.

Exercise 2.11:  The following problem is based on [Kogge, 1990, p. 390].  Let
   A ⇒ B represent “If the car has gas, then I can go to the store.”;
   B  ∧ C  ⇒  D represents “If I can go to the store and I have money, then I can buy
food.”;
   (D ∧  (E  ∨ F)) ⇒ G represents “If I have food and either the sun is shining or I have
an umbrella, then today I can go on a picnic.”

 If the above formulae are true, and the car has gas, and I have money and an
umbrella, can I go on a picnic?

Show how to use tautology to answer the question.
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Exercise 2.12: A favorite toy problem in artificial intelligence is “Hunt the
Wumpus”9. The wumpus hunter is an agent travelling over a grid in which each
square may contain a wumpus. If the agent enters a square containing a wumpus, it’s
“game over” for the agent. Luckily, if the agent can  combine  basic propositional
reasoning with some sensory information, it can avoid entering a wumpus-occupied
square. For if a square contains a stench, then it or one of its four adjacent squares
(north, west, east or south) contains a wumpus.  Suppose the agent is at square [1,2]
and knows from its travels that there is no stench at [1,1], or [2.,1], but there is one
at [1,2]:

1,1 2,1

1,2 2,2

3,1

1,3

ok ok

Let Wij represent the proposition that a wumpus is in square [i, j], and Sij represents
a stench at [i, j]. Then

      not S21 implies (not W11 and not W21 and not W22 and not W31 )

and similar propositions hold for the other squares.

Furthermore,

       S12 implies (W13 or W12 or W22 or W11)

Use these and corresponding implications for the other squares, together with the
facts not S11,  not S21, and S12,  to show by means of the tautology program
that there must be a wumpus in square [1,3].

9 For more details, see Russell and Norvig, Artificial Intelligence, An Modern Approach,
Prentice-Hall: 1995.  pp. 153-157, 174-176.
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3. CHECKING DESCRIPTIVE STATEMENTS

The tautology program has some value for learning the basic concepts of
propositional logic; that is why we began with it—its application is easy to understand,
and we can look inside and see how it works, without much difficulty.  But it has almost
no utility for verification problems because it cannot be used to check descriptive
propositions which describe program states. (As a result, it is not directly applicable to
the problem of checking the condition in conditional statements described in Chapter 1.)
The reason is that tautology  requires  that its input consist of propositional functions
constructed from Boolean variables represented by upper-case letters. Relational
expressions, such as x > 0, which are needed to represent a Boolean condition in a
conditional statement, or more generally, to describe the state of specific variables at a
particular point in a program, cannot be used.

So from now on, we will use a more powerful tool which allows us to check the status of
propositions constructed from relational expressions. This program is christened wang,
after the inventor of the program’s algorithm, Hao Wang  [Wang, 1960].  For wang, the
input file contains propositions constructed from terms rather than from Boolean
variables.

3.1 Terms

A term is a data object structured as a tree, with a symbol assigned to each
node. Terms can be represented in many different ways, but typically they are
represented as functional expressions f(t1, t2, . . , tk), where each ti  is itself a term.

Each node in a term has a fixed number of sub-trees; the number is called the arity  of
the node.  If the root node of a term has arity 1, the term can be represented in prefix  or
postfix  notation10; for example:

- t 
or

t ! .

If the root node has arity 2, the term can be represented by an infix expression; for
example:

t1 and t2.

The concept of a term is very general.  Terms can contain variables, but need not. Often
they can be interpreted as expressions which represent a numerical or logical value, but
this is not required, and in some cases, terms are just treated as uninterpreted structures
used to hold separate items of abstract information.

10 In most programming languages, the representation of a term by a prefix or postfix operator is
a matter of syntactic convenience with no semantic implications.  A term such as  n! is just
‘syntactic sugar’ for the  functional term ‘!’(n) or perhaps factorial(n).  C/Java syntax is unusual
and complicated by the presence of  two operators (++ and --) which are used in both prefix and
postfix modes and mean something different in each case.  In this case, ++n represents one
functional term, say, preinc(n), while n++ represents another, postinc(n).
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If the root node of a term is one of the following:

true, false, not, and, or, xor, implies, iff

then we shall call the term a logical term, otherwise, a non-logical term.

For example,

i < n and n < m

is a logical term (the root node is and), and

0,  i,  z(true, false),  x=0,  p = (q or r)

are all examples of non-logical terms.

In order to describe the state of programs, we will need to use non-logical terms
constructed from relational operators  such as <, ≤, =, ≠, etc.  In the verification tools, we
will use the ASCII equivalents  <= and  >= for ≤ and ≥,  = for =, and  <> for ≠.

3.2 Invoking the wang program

The program wang is typically invoked with a command of the form

            %wang < data file

Here is a sample data file:

x>0.

(s and q implies r) implies (q implies p or r).

x=2 implies x=2.

0 = 0.
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and here is the output which results:

% loading file /cs/fac/bin/wang
% wang loaded in module user, 0.020 sec 45,860 bytes
Version 1.4, Dec. 12, 1999.

x>0

Counterexample: x>0 is false.
* Not valid.

s and q implies r implies (q implies p or r)

Counterexample: q is true and each of [r,s,p] is false.
* Not valid.

x=2 implies x=2

* Valid.

0=0

Counterexample: 0=0 is false.
* Not valid.

The wang program does not interpret or evaluate non-logical terms, so it does not assign
a truth-value even to such obvious truths as 0=0.  In effect, non-logical terms are treated as
complex names for Boolean variables, and so the program finds the proposition 0=0 to be
not valid when treated as a propositional function, just as the proposition x>0  is not a
valid formula.  We shall see in Chapter 4 how we can add to wang the additional
mathematical knowledge needed to establish that 0=0 is a tautology.

Like tautology, wang presents a counter-example if the input proposition is not a
tautology by giving an assignment of truth values to the non-logical terms in the input
which will make it false.
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3.3 Terms and variables in wang

The wang program, like the tautology program, is written in Prolog  and uses
Prolog’s built-in parser to parse non-logical terms in the input. To be properly
interpreted by wang, these terms must satisfy the following conditions:

• The only operators allowed are the relational operators:

=, <>, <, >, <=, =>,

and the arithmetic operators

+, -, *, /, **.

All other mathematical functions such as integer division (div),  remainder (mod),
absolute value (abs), etc. are represented by functional expressions. 11 

• expressions associated with complex data structures such as arrays, e. g.
x[y+2],  are not allowed;

• all variables and function names must begin with a lower-case letter.

(Contrast this latter condition with tautology in which Prolog’s variable-binding
mechanism was used to assign truth variables to the variables in propositional
functions, and hence required that the propositional variables be represented by Prolog
variables.)

3.4 Solving English-to-logic puzzles

A non-logical term can take the form of a character string constant enclosed in
single quotes.  This gives us a better way of solving problems such as Exercise 2.2 which
involve translating English statements into propositions.  Instead of making up variable
names to represent the English phrases, we can use the English phrases themselves as
non-logical terms, and use wang to test if the resulting formula is a tautology.

As an example, here is the Tardy Bus Problem [Gries, 1993, p. 39] in its English
formulation:

“If Bill takes the bus, then Bill misses his appointment, if the bus is late.  Bill
should not go home, if he misses his appointment and feels downcast.  If Bill
does not get the job then he feels downcast and should not go home.”

Is the conjecture

“Bill gets the job if he misses his appointment and should go home”

11 The reader may wonder why  we don't use the C/Java symbols for equality (==), inequality
(!=)  or remainder (%). The decision to use different symbols stems from the need to distinguish
between the mathematical functions which are used descriptively in propositions about
program states, and the programmed functions used to compute those states.  We will have more
to say on this in Chapter 7.
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true?

To solve this using wang, we translate the premises and the conjecture into the
proposition

('Bill takes the bus' implies ('the bus is late' implies
     'Bill misses his appointment') )
and
('Bill misses his appointment' and 'Bill feels downcast' implies
     not 'Bill should go home')
and
(not 'Bill gets the job'  implies 'Bill feels downcast' and not 'Bill should go home' )

implies

( ‘Bill misses his appointment' and  ‘Bill should go home'  implies
     'Bill gets the job').

and if we type it in correctly, wang will produce the correct answer.

Exercise 3.1: Find a logical translation for “unless” and use it to translate the
statement

      “x equals 0 if it is not less than 0, unless it is greater than 0.“

into a proposition.

Exercise 3.2: Rework the ‘picnic’ problem in exercise 2.11, replacing variables with
English phrases, and using wang rather than tautology.

Exercise 3.3: Given the premises of the “Tardy Bus Problem”, use wang to check
the conjecture that Bill feels downcast if he misses his appointment or the bus is late.

Exercise 3.4: Portia's Caskets  Smullyan[1978, p. 60]12 poses a variant of Portia’s
problem from Shakespeare’s Merchant of Venice : suppose Portia has placed her
portrait into one of two caskets, one of which is silver and the other is gold.  On the
gold casket is inscribed “The portrait is not here”.  On the silver casket is inscribed
“Exactly one of these inscriptions is true.”  Assuming that each inscription is either
true or false, use wang to determine in which casket the portrait is hidden13.

Hint: Interpret the gold inscription as not ‘portrait is in gold casket’, and the silver
inscription as ‘gold inscription’ xor ‘silver inscription’; construct two implications with
the same antecedent expressing the data given in the problem,  and with conclusions
‘portrait is in gold casket’ and ‘portrait is in silver casket’.  Test each implication with
wang.

12 See also Backhouse [1986, p. 49].
13 If we don’t assume this, Portia can place the portrait wherever she wants, since the
inscriptions are then just marks from which nothing can be inferred.  See [Smullyan,  p. 70.]
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3.5 Sequents and Wang’s algorithm

The wang program uses a very different algorithm from the tautology program.
Rather than searching for a falsifying assignment to the variables of the propositional
formula being tested, Wang’s algorithm uses a set of rules to rewrite the input formula
into  simpler and simpler (but equivalent) forms until its truth can be checked ‘by
inspection’— that is, by a syntactic test on the simplified formula. Wang’s algorithm
makes no use of truth values at all; it therefore ignores any interpretation which the
propositional formula may have.  This is an important feature of propositional logic. As
long as we are only concerned with the sorts of propositions traditionally of interest to
logicians, namely tautologies and contradictions, questions of semantics are irrelevant.
All that matters is the formal structure of the proposition—the way it is put together out
of variables and logical operations.

The rewrite rules in Wang’s algorithm operate on a special form of a proposition known
as a sequent 14. Consider propositions with the structure

p1  and p2 . . .    implies q1 or q2. . .

that is, implications in which the antecedent (left-hand side) is a conjunction of
propositions and the consequent (right-hand side) is a disjunction.  A sequent is a way
of rewriting this kind of proposition as stating a relation (which we will denote by >>)
between the antecedent and consequent, each considered as sets of formulae.  The and
connectives on the left-hand side and the or connectives on the right-hand side are
replaced by commas to separate the elements of the sets.

As an example,  the formula

p and q implies q or r

has the following form when written as a sequent:

{p, q } >>  {q, r}.

A sequent is obviously a tautology if the left-hand and right-hand sides intersect—i. e.,
if they have a formula in common.  (Why?)

Wang’s algorithm  starts by constructing the sequent

{} >> {input formula }

and then repeatedly applies a set of rules to break down the input formula into its
constituents, producing one or more new sequents, which are again transformed by the
rules, until none of the rules apply. If at any point in the transformation of one of these
sequents, it is found that the left side and right side have a term in common, then that
sequent is proved to be a tautology.

14 Sometimes also called a logical consequence.   See [Mueller,  p. 419].   Propositions written in
this form are also called clauses.  Theorem-proving programs typically require the theorem to
be proved to be stated in or converted to clause form.  See [Richards,  p. 93.]
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When no further rules apply,  the resulting sequents contain only non-logical terms.
These sequents can then be easily tested to see if the left- and right-hand sides intersect.
If not, the sequent in question is invalid, for if, in a sequent A >> B, all terms are non-
logical and A and B have no term in common, then we can assign all the terms in A the
value true, so their conjunction is true,  and all the terms in B  can be assigned false, so
their disjunction is false. The sequent is then equivalent to the proposition true implies
false, which is false, i. e., A >> B is not a tautology.

The transformation rules used by Wang’s algorithm can be stated informally as follows:

Negation

If a sequent contains not P on one side, delete it and add P to the other side:

{not P, . . } >> { . . }    is rewritten as  { . . } >> {P, . . }
{. . } >> {not P,  . . }    is rewritten as  {P,  . . } >> {. . }

Conjunction

Replace a conjunction on the left-hand side of a sequent by its conjuncts:

{P and Q, . . } >> { . . } is rewritten as {P, Q, . . } >> { . . }

Replace a sequent with a conjunction on the right-hand side by two copies in
which the conjunction is replaced by each of its conjuncts:

{ . . } >> {P and Q, . . } is rewritten as
{ . . } >> {P, . . }
and
{ . . } >> {Q, . . }.

The propositional form of this rule is:

(R implies (P and Q) or S) iff
((R implies P or S)
and
(R implies Q or S))

which can easily be shown to be a tautology.

Implication

To eliminate an implication P implies Q in a sequent, replace it by not P or Q.

Equivalence

To eliminate an equivalence (iff) in a sequent, the equivalence is replaced by its
definition in terms of implications.

For example,
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{P iff Q, . . } >> { . . } is rewritten as

{(P implies Q) and (Q implies P), . . } >> { . . }

Exclusive-or

To eliminate an exclusive-or P xor Q in a sequent, replace it by not (P iff Q).

A more detailed discussion of Wang’s algorithm expressed in traditional logic notation,
together with Lisp and Prolog implementations, is to be found in [Mueller, 1988, 419-
449].  A brief discussion and Prolog implementation is also found in [Sperschneider,
1991, p. 209-210].

Exercise 3.5: Show that the first of the negation rules is logically justified in the sense
that

((not P and Q)) implies R iff (Q implies P or R)

is a tautology.

Exercise 3.6 Express the second negation rule as a propositional formula and show
it is a tautology.

Exercise 3.7:

(a) Develop rules to eliminate disjunctions from a sequent, paralleling those for
conjunctions;

(b) construct propositional formulae to correspond to these rules and show they
are tautologies.

3.6 Performance issues

The programs wang and tautology use very different methods to decide whether
a formula is a tautology, and this is reflected in very different running times for the same
formulae.  tautology  can only establish that a formula is a tautology by checking that
no  assignment of truth values to the variables yields false, so if a valid formula has n
variables, there are 2n cases which have to be checked.  For wang, on the other hand, the
running time depends not on the number of variables, but on the number and complexity
of the terms in the formula.  For example, if a formula has only non-logical terms and is
already in sequent form:

P1 and P2 and . . . Pk    implies    Q1 or Q2 or . . . Qm

then the time to determine whether it is a tautology is, in the worst case, the time
required to compare each Pi with all the Qj , which is proportional to k*m. The
comparison is complicated however by the fact that for both algorithms the running time
may be much less than the worst case — tautology’s algorithm can, for example,
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determine that a conjunction is invalid as soon as it finds a false conjunct ; the remaining
conjuncts do not need to be determined.  On the other hand, Wang’s algorithm can
determine that a formula is valid as soon as it detects an overlap between left and right
sides of the sequent, even before the sequent has been completely reduced to a list of
non-logical terms.

The tautology program is short and easy to understand; the wang program is longer
and much more complicated since its transformation rules involve various set
manipulations. (Actually, to save the time involved in maintaining sets of terms with no
duplicates, wang just maintains sequents as a pair of lists which may include
duplication of terms.)  In general, the greater complexity of Wang’s algorithm pays off in
performance as shown by the following examples, using /usr/bin/time to get an
approximate running time on a Sun workstation: (Only the “real “ or program execution
time is shown.)

% /usr/bin/time tautology < taut.test1
Version 2.4, May 14, 1998

A iff B iff A iff B iff A iff B iff A iff B iff A iff B iff
A iff B iff A iff B iff A iff B iff A iff B iff A iff B iff
A iff B iff A iff B
* Valid.

real     6:19.0

------------------------------------------

% /usr/bin/time wang < wang.test1
Version 1.4, Dec. 12, 1999.

a iff b iff a iff b iff a iff b iff a iff b iff a iff b iff
a iff b iff a iff b
iff a iff b iff a iff b iff a iff b iff a iff b iff a iff b

* Valid.

real     1:11.9

------------------------------------------
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% /usr/bin/time tautology < taut.test2
Version 2.4, May 14, 1998

A iff B iff A iff B iff A iff B iff A iff B iff A iff B iff
A iff B iff A iff B
iff A iff B iff A iff B iff A iff B iff A iff B iff A iff C
* Not valid.
* Counter-example: false iff true iff false iff true iff
false iff true iff false iff true iff false iff true iff
false iff true iff false iff true iff false iff true iff
false iff true iff false iff true iff false iff true iff
false iff false

real     1:11.4

------------------------------------------

% /usr/bin/time wang < wang.test2
Version 1.4, Dec. 12, 1999.

a iff b iff a iff b iff a iff b iff a iff b iff a iff b iff
a iff b iff a iff b
iff a iff b iff a iff b iff a iff b iff a iff b iff a iff c

Counterexample: b is true and each of [a,c] is false.
* Not valid.

real       22.8

The particular type of proposition used in the above examples is stressful for both
algorithms. In the case of tautology, the search for a falsifying assignment of truth
values is not very intelligent and in these examples leads to a very large amount of
backtracking and retrying; in wang, each iff operation doubles the number of sequents
that have to be checked, causing an exponential growth in the running time.

But interestingly enough, there is a special tautology test for just these sorts of
propositions whose running time is linear in the length of the proposition and hence very
efficient. The test is just to check the parity of the number of occurrences of every
variable in the formula, since a formula which consists of only bi-conditionals is a
tautology if and only if each propositional variable occurs an even number of times15.
The moral is that a problem which may be very difficult for a general algorithm may be
almost trivial for a special-purpose algorithm designed for just that case.

Exercise 3.8:  Knights and Knaves [Smullyan, 1978, p. 22].  Suppose  knights
always tell the truth and knaves always lie. We encounter A and B, each of whom is
either a knight or a knave.  A says “I am a knave but B isn’t.”  Compare the
performance of wang  and tautology  in determining whether A is a knight or a
knave, and the same for B.

15 [Enderton, 1972, p. 39]
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Exercise 3.9:  Construct an equivalence which expresses the associativity of iff and
show that it is a tautology.  Demonstrate the associativity of iff by showing that the
different parenthesizations of a iff b iff b iff a are all valid.

3.7 The Deduction Theorem

The meaning of the term ‘theorem’ is not a proposition which is true but a
proposition which has a valid proof  — that is, a sequence of statements which begins with
the hypothesis or premise of the theorem and ends with its conclusion, in which each
statement is derived from the previous statements in the sequence by means of a valid
inference  rule, such as modus ponens :

  from the premises
p

   and
p implies q,

   infer q.

To be a valid inference rule, the rule must have the property that it never allows a false
statement to be derived from a true one.  This property is mirrored in propositional logic
by the relation of implication: a true statement can never imply a false one.

All the theorems of propositional logic are expressible as tautologies and vice-versa.  So
if “P implies Q” is a tautology  then “P implies Q” is a theorem and Q  can be inferred
from P.  This result is called the Deduction Theorem (see [Gries, 1981, p. 36].) It is
actually an example of a metatheorem , since it is a theorem about the properties of
theorems.

We can use the Deduction Theorem to side-step the problem of finding a proof in
propositional logic for a purported theorem. Instead of looking for a proof, we convert
the theorem into an implication of the form p implies q  and check if the implication is a
tautology.  If it is, then the Deduction Theorem tells us a proof exists.  If the implication
is not a tautology, then for some values of its variables, it must be possible for p to be
true while q is false. So there could be no valid inference of q from p and p implies q
cannot be a theorem.
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Exercise 3.10:  Reformulate each of the following inferences as an implication and
use wang to show that , on the basis of the Deduction Theorem, each of the following
inferences is correct:

(a) from the two premises p implies q, and q implies r, one can correctly infer the
proposition  p or q implies r.

(b) from not  (p and q) and q, one can infer not p.

(c) [Dromey, 1989, p. 54]  e implies d  follows from  the hypotheses:

a implies (b implies c and d)
      not e or a

      b
      e.

Exercise 3.11:   Use wang to show that each of the following inference patterns is
incorrect:

(a)  from p implies q and q, one can infer p.

(b)  from p or q and q, one can infer not p.

(c)  if  (p and q) and not q are not both true, then  one can infer p.
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