Computing for Math and Stats

Lecture 5

Matrix Operations

- Most regular arithmetic operations work for matrices and vectors
- You can add two matrices (or vectors)
 - As long as they can be added
- You can multiply them, too
 - Matrix and vector multiplication rules apply
- Division is a bit trickier

Division

- Our notation for real number division (fractions) rely on commutativity of multiplication
- In Matlab we need
 - Matrix inverse
 - Left division
 - Right division
- We have notation for all

Inverse

- We can invoke the inv() function
- We can raise a matrix to -1 (^-1)
- If the matrix is invertible it is inverted
- In an ideal world a matrix is invertible if its determinant is non-zero
- Back to reality, it is trickier
 - Computer accuracy is finite (due to round-off error)
 - The properties of matrices can play tricks (condition number)
- See invertibility.m

Left Division

- Solve AX = B
 - X and B are (column) vectors
 - A is square (and invertible) matrix
- Solution is X = A⁻¹B
- If we want to avoid the full inversion we write
 - X = A B
- Matlab uses different numerical algorithms to calculate A\B

Right Division

- Solve XC = D
 - X and D are row vectors
 - C is a square (and invertible) matrix
- Solution is X = D C⁻¹
- In Matlab we write
 - X=D/C

Element-wise Operations

- These appear sometimes in linear algebra or statistics
- Appear often in image and audio processing
- Sometimes are useful shortcuts
- They have a dot before the regular operator
- We have .*, ./, .^

Built-in Functions

- Most functions that work on real numbers work on vectors/matrices as well
 - Sine, cosine, sqrt etc
- We also have
 - mean(A), median(A), sum(A), std(A)
 - sort(A)
 - m=max(A), [d,n]=max(A), min(A)
 - det(A), inv(A)
 - dot(v1,v2), cross(v1,v2)

Random Matrices

- Random vectors and matrices are extremely useful
 - To try our algorithms to see if they "always" work
 - Some algorithms require a random number generator (Monte Carlo methods)
- We have the
 - rand(m,n): uniformly distributed matrix. With one arg n produces n x n matrix and without it produces 1x1.
 - randi(imax, m, n): random integers 1...imax
 - randn(m,n): normally distributed