Computing for Math and Stats

Lecture 5

Matrix Operations

- Most regular arithmetic operations work for matrices and vectors
- You can add two matrices (or vectors)
- As long as they can be added
- You can multiply them, too
- Matrix and vector multiplication rules apply
- Division is a bit trickier

Division

- Our notation for real number division (fractions) rely on commutativity of multiplication
- In Matlab we need
- Matrix inverse
- Left division
- Right division
- We have notation for all

Inverse

- We can invoke the inv() function
- We can raise a matrix to -1 (^-1)
- If the matrix is invertible it is inverted
- In an ideal world a matrix is invertible if its determinant is non-zero
- Back to reality, it is trickier
- Computer accuracy is finite (due to round-off error)
- The properties of matrices can play tricks (condition number)
- See invertibility.m

Left Division

- Solve AX = B
- X and B are (column) vectors
- A is square (and invertible) matrix
- Solution is $X=A^{-1} B$
- If we want to avoid the full inversion we write
- X = AlB
- Matlab uses different numerical algorithms to calculate A\B

Right Division

- Solve $X C=D$
- X and D are row vectors
- C is a square (and invertible) matrix
- Solution is $\mathrm{X}=\mathrm{D} \mathrm{C}^{-1}$
- In Matlab we write
- $\mathrm{X}=\mathrm{D} / \mathrm{C}$

Element-wise Operations

- These appear sometimes in linear algebra or statistics
- Appear often in image and audio processing
- Sometimes are useful shortcuts
- They have a dot before the regular operator
- We have .*, ./, .^

Built-in Functions

- Most functions that work on real numbers work on vectors/matrices as well
- Sine, cosine, sqrt etc
- We also have
- mean(A), median(A), sum(A), std(A)
- $\operatorname{sort}(A)$
- m=max(A), $[d, n]=\max (A), \min (A)$
- $\operatorname{det}(A), \operatorname{inv}(A)$
- dot(v1,v2), cross(v1,v2)

Random Matrices

- Random vectors and matrices are extremely useful
- To try our algorithms to see if they "always" work
- Some algorithms require a random number generator (Monte Carlo methods)
- We have the
- rand(m,n): uniformly distributed matrix. With one arg n produces $\mathrm{n} \times \mathrm{n}$ matrix and without it produces 1×1.
- randi(imax, m, n): random integers 1...imax
- randn(m,n): normally distributed

