## Computing for Math and Stats

Lecture 3

## Vectors

- Vectors and matrices is what Matlab is designed to handle
- Vectors can be 2-D, 3-D but also higher dimensionality
- Mathematicians, scientists and engineers often use high dimensionality vectors/matrices, sometimes with infinite number of dimensions
- Matlab can only represent finite dimensionality vectors/matrices explicitly


## Vectors

- The elements of the vector can be given in square brackets (commas optional)
- Vec1 = [1, 2, 3, 4, 15]
- The first element can be accessed as
- Vec1(1)
- Or
- Indx=1;
- Vec1(Indx)


## Row Vector vs Column Vector

- The above was a row vector
- We can define column vectors as well
- Usually when it is not stated explicitly in a modern textbook it is a column vector (at least in engineering)
- Here is one:
- Vec2 $=$ [1; 2; 3; 4; 15]


## Vectors

- Very often we need to create a simple vector to test some code.
- To create a vector with 2, 3, 4, 5 (brackets optional)
- Vec3 $=[2: 5]$
- Vec3 = linspace $(2,5,4)$
- Vec3 = [2:1:5]
- The colon means ..
- Vec3(2:3)
- Notice the vector access is round (not square) brackets


## Matrices

- Similar deal
- Mat1 $=$ [1, 2, 3; 4, 5, 6; 7, 8, 9]
- Mat2 $=$ [1:3;4:6;7:9]
- Mat4 = zeros(3,3)
- Mat5 = eye(3)
- We also have the transpose operator
- Mat1'


## Creating Symmetric Matrices

- A symmetric matrix is identical to its transpose
- To make a symmetric matrix out of a non symmetric one we add to it its transpose
- $A+A^{\prime}$ is symmetric
- $\left(A+A^{\prime}\right) / 2$ is the symmetric part of $A$
- $A^{*} A^{\prime}$ is symmetric too.
- This is used in least squares calculations
- See checksymmetric.m script.
- Also checkcom.m


## Creating a Skew Symmetric

- A skew symmetric matrix is the opposite of its transpose (their sum is the zero matrix)
- We create one my subtracting from it its transpose
- A-A' is skew symmetric
- (A-A')/2 is the skew symmetric part of a matrix
- Every matrix is the sum of its symmetric and skew symmetric parts.


## Checking for Equality

- We often need to check if two numbers/vectors/ matrices are equal
- The standard method is to subtract the two quantities and see if the result is zero.
- Question: how do you check two $1000 \times 1000$ matrices for equality?
- Answer: you do not! Use the norm function.

