

Computing for Math and Stats

Lecture 21

Recursion

● That’s a fancy name for a very simple concept
● Recursion is when a function calls (invokes) itself
● There are algorithms that are inherently recursive

– They are very awkward to implement without recursion

● There are algorithms that can be implemented both
recursively and non-recursively (iteratively)
– The non-recursive version is usually a bit faster, sometimes much

faster

● One can design a language without for-loops or while-loops,
as long as the language supports recursion

Recursion Basics

● If a function keeps calling itself it will never end
– Actually it will end by crashing.

● All recursive functions work in more or less the
following way
– Examine if the problem is “basic” enough to be

solved in one shot and if it is solve it.

– Otherwise solve it by invoking self with a “simpler”
version of the problem one or more times.

Recursive Fibonacci

f (x)={
x=1
x=2
o /w

1
1

f (x−1)+ f (x−2)}

Recursive Fibonacci

● The recursive implementation looks like the
mathematical definition

function [f] = recfib(n)
%RECFIB recursive (and slow) Fibonacci
% Returns the n_th Fibonacci

if (n==1)|(n==2)
 f = 1;
else
 f = recfib(n-1)+recfib(n-2);
end
end

Why so slow

● The implementation seems to be very slow for
large numbers

● This is because we compute and recompute
the same things over and over again

● This is an example where one should not use
recursion... at least not this way

Quicksort

● This is much (much) faster than bubblesort on
average

● It is also the fastest on average
● It is not perfect though

– In some (rare) cases it is slow

– Not very good for small inputs

– Requires extra memory (not much)

Quicksort

● How it works
– Pick an element p at “random”

– Any element less than p goes to the top of the array

– Any element greater than p goes to the bottom

– Recursively call quicksort on the top half

– Recursively call quicksort on the bottom half

How fast is Quicksort

● With some optimizations it is the fastest on
average

● Occasionally is slow
● It needs a little extra memory due to the

recursion

T (N)=2T (
N
2

)+N

T (N)=N log N

T (N)=T (
N
2

)+T (
N
2

)+N

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

