#### Computing for Math and Stats

Lecture 19



$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}^{T} M^{-1} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 1$$

$$\vec{x}^T M^{-1} \vec{x} = 1$$

$$(\vec{x} - \mu)^T M^{-1}(\vec{x} - \mu) = 1$$

- The equation of an ellipse can be written in a matrix form
- The matrix involved has to be symmetric
  If it is not we take the symmetric part of it.
- The matrix involved has to be positive definite
  If it is not it is a parabola or hyperbola
- Can be extended to higher dimensions
  - We can use the term ellipsoid for 3-D
  - We can stick the prefix hyper- for higher dimensions

- Drawing an ellipse
  - Create a set of points that satisfy the equation of an ellipse
- It is easy to take care of the center of the ellipse
  For now the center is at the origin
- We know how to draw a unit circle
  - We start from there

 $M = L^T L$ 

 $x_{c}^{T}x_{c}=1$ 

 $x = L^T x_c$ 

 $x^{T} M^{-1} x = (L^{T} x_{c})^{T} L^{-1} L^{-T} L^{T} x_{c} = i$  $x_{c}^{T}LL^{-1}L^{-T}L^{T}x_{c}=x_{c}^{T}x_{c}=1$ 

- Here is how we draw the ellipse:
  - Create the points to draw a circle
  - Multiply these points by the transpose of matrix L
    - Which we get by decomposing the matrix M
  - The resulting points form an ellipse
- The same exact procedure can be used for 3-D ellipsoids (or higher but then we cannot plot them)

- This procedure
  - Makes drawing easy
  - Given the matrix we can draw the ellipse
- But
  - Cannot draw hyperbolas/parabolas
    - The Cholesky decomposition does not work for matrices representing hyperbolas