Computing for Math and Stats

Lecture 19

Ellipses

$$
\begin{gathered}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right]^{T}\left[\begin{array}{l}
a^{2} \\
b^{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
x \\
y
\end{array}\right]=1}
\end{gathered}
$$

Ellipses

$$
\begin{gathered}
{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]^{T} M^{-1}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=1} \\
\vec{x}^{T} M^{-1} \vec{x}=1 \\
(\vec{x}-\mu)^{T} M^{-1}(\vec{x}-\mu)=1
\end{gathered}
$$

Ellipses

- The equation of an ellipse can be written in a matrix form
- The matrix involved has to be symmetric
- If it is not we take the symmetric part of it.
- The matrix involved has to be positive definite
- If it is not it is a parabola or hyperbola
- Can be extended to higher dimensions
- We can use the term ellipsoid for 3-D
- We can stick the prefix hyper- for higher dimensions

Ellipses

- Drawing an ellipse
- Create a set of points that satisfy the equation of an ellipse
- It is easy to take care of the center of the ellipse
- For now the center is at the origin
- We know how to draw a unit circle
- We start from there

Ellipses

$$
\begin{gathered}
M=L^{T} L \\
x_{c}{ }^{T} x_{c}=1 \\
x=L^{T} x_{c} \\
x^{T} M^{-1} x=\left(L^{T} x_{c}\right)^{T} L^{-1} L^{-T} L^{T} x_{c}=\dot{c} \\
x_{c}^{T} L L^{-1} L^{-T} L^{T} x_{c}=x_{c}^{T} x_{c}=1
\end{gathered}
$$

Ellipses

- Here is how we draw the ellipse:
- Create the points to draw a circle
- Multiply these points by the transpose of matrix L
- Which we get by decomposing the matrix M
- The resulting points form an ellipse
- The same exact procedure can be used for 3-D ellipsoids (or higher but then we cannot plot them)

Ellipses

- This procedure
- Makes drawing easy
- Given the matrix we can draw the ellipse
- But
- Cannot draw hyperbolas/parabolas
- The Cholesky decomposition does not work for matrices representing hyperbolas

