Computing for Math and Stats

Lecture 15.

Multiplying Polynomials

$$
\sum_{k=0}^{M+N} c_{k} x^{k}=\left(\sum_{i=0}^{N} a_{i} x^{i}\right)\left(\sum_{j=0}^{M} b_{j} x^{j}\right)
$$

$$
c_{k}=\sum_{i=\max (0, k-M)}^{\min (k, N)} a_{i} b_{k-i}
$$

Multiplying Polynomials

- We now have to translate this to Matlab
- Vectors in Matlab start at 1
- Polynomial indices start at 0
- There is one more little problem
- Matlab coefficients are in the opposite order
- We ignore it and pretend that we know nothing
- The function that does this is conv
- See myconv.m

Add Polynomials

- We can add polynomials simply by adding the coefficients of same degree
- In Matlab the first element is the highest degree coefficient
- We need to align them by zero-padding
- See polyadd.m

Evaluating Polynomials

$$
\begin{gathered}
p(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \\
p(x)=\left(\left(a_{3} x+a_{2}\right) x+a_{1}\right) x+a_{0}
\end{gathered}
$$

Fitting Polynomials

- We are given a bunch of points (x, y) and we are asked to find a polynomial that goes through them
- We "evaluate" the polynomial at each x and equate the value to the y.
- From every point we get one equation
- We need $\mathrm{N}+1$ points to fit an N degree polynomial

Fitting Polynomials

$$
\begin{gathered}
\left(x_{0}, y_{0}\right) \\
\left(x_{1}, y_{1}\right) \\
\left(x_{2}, y_{2}\right) \\
\vdots \\
\left(x_{N}, y_{N}\right)
\end{gathered}
$$

Fitting Polynomials

$$
\begin{gathered}
a_{0} x_{1}^{0}+a_{1} x_{1}^{1}+a_{2} x_{1}^{2}+\cdots+a_{N} x_{1}^{N}=y_{1} \\
a_{0} x_{2}^{0}+a_{1} x_{2}^{1}+a_{2} x_{2}^{2}+\cdots+a_{N} x_{2}^{N}=y_{2} \\
a_{0} x_{3}^{0}+a_{1} x_{3}^{1}+a_{2} x_{3}^{2}+\cdots+a_{N} x_{3}^{N}=y_{3} \\
a_{0} x_{4}^{0}+a_{1} x_{4}^{1}+a_{2} x_{4}^{2}+\cdots+a_{N} x_{4}^{N}=y_{4} \\
\bullet \\
\bullet \\
a_{0} x_{N+1}^{0}+a_{1} x_{N+1}^{1}+a_{2} x_{N+1}^{2}+\cdots+a_{N} x_{N+1}^{N}=y_{N+1}
\end{gathered}
$$

Fitting Polynomials

$$
\left|\begin{array}{ccccc}
x_{1}^{0} & x_{1}^{1} & x_{1}^{2} & & x_{1}^{N} \\
x_{2}^{0} & x_{2}^{1} & x_{2}^{2} & & x_{2}^{N} \\
x_{3}^{0} & x_{3}^{1} & x_{3}^{2} & \cdots & x_{3}^{N} \\
\vdots & \vdots & \vdots & \vdots \\
x_{N+1}^{0} & x_{N+1}^{1} & x_{N+1}^{2} & x_{N+1}^{N}
\end{array}\right|\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{N}
\end{array}|=| \begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
\vdots \\
y_{N+1}
\end{array}\right]
$$

Polynomial Fitting

- What happens if we have more points
- This is very common in science and engineering
- The method we follow is called Least Squares
- One of the most important methods ever conceived by humans
- Second only to the pizza recipe

Things to play with at home

- Modify myconv so that the indexing is proper. That is, there is no -1 in lines 6 and 7, indexing of the for loop starts at 1, etc
- Write a function named matlabpoly that accepts a vector p as argument (the coefficients of a polynomial) and prints a matlab expression that represents the polynomial.
- Write a function that accepts as arguments a vector p (the coefficients of a polynomial) and two numbers xmin and xmax and polts the polynomial p from xmin to xmax.

