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5.1.1. Elimination of Structure Unknowns

Since we assume rigidity we kmdhat the motion can be represented by a rotation
and a translation

P =RP+T (5.1)

whereP andP' are the positionectors of a world point before and after the motiRms
the rotation matrix and is the translation ector In the relatve aientation problem all
of them are unknowns. From the projeeteguations we hae
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wherep and p' are the projections of the world points on the image planeZaaud Z'
are thez-coordinates of point® and P’ respectrely. Vectors p and p' are the only

knowns in this problem since we can measure them on the image. If we eliminate the
world points then Eq. (5.1) becomes

Z'p = ZRp+T. (5.2)

p

Now we haveone equation wherp and p' are knowns and all the rest are unknowns. The
unknavns are of tw kinds: structure unkmens that are related to the structure of the
scene, e.g. the position of the points viewed, and motion wmisharhich describe the
motion.Z andZ' belong to the first kind of unknowns and there ame @ivthem for each

point in the scene. The motion parameters belong to the second kind and are independent
of the number of points in the scene.

To lve the problem we he o gart eliminating unknowns. The strgiewe follow
is to eliminate all the per-point unknowns and get an equation independent of structure.
Before we do this let us look at the balance of equations first. Eq. (5.2) is a vector equa-
tion that is equialent to 3 scalar equations. If we eliminate the svucture unknans Z
andZ' we hare mly one equation left.

To diminate theZ' we can use a property of the cross product that says that the
cross product of a vector with itself is the zero vector:

axa=0
and multiply both sides of Eq. (5.2) Ipy
Zpxp=Z(RPpxp +Txp =0

and we still hge a vetor equation that is equalent to 3 scalar ones (but thare not
independent anymore) and one less umkndMe can eliminate the remaining unkmo
by using a property of the dot product that says that the dot produco afttvogonal
vectors is equal to zero. 8know that the cross product @fand p' is another vector that
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is orthogonal to botl and p'. So if we take the dot product of both sides withwe hare

0=Z (RR)x p/ T + T x p T = Z (R x p 1T

Now assumingZ is not equal to zero (otherwise the object would bg o close to our

camera) we get
ng) x p'Ehr -0, (5.3)

We row haveone scalar equation whose unknowns are the motion paramet@nW
simplify things a bit more if we notice that Eq. (5.3) isiple scalar poduct Recall that
one of the definitions of the cross product ob wectors

Cay O
V=i
0

and
Ca, O
V, = th, U
2 Ebz 0
(€2 [
is equal to the following depterminant
Oox y 20
=0 0=
VixVa = o& by ¢ .
0% b, ¢
(b1Co = bye) X +(Cray — o) Y +(ag by — axby)Z2 = (5.4)
Dbl(:z - bz(‘/_]_ U
BclaZ L B
[Pa2 — @by [
whereX; y, Z are the unit vectors along the corresponding ax&s. itf
Cag O
V3 = 803 B: agX +bgy +C32
(€3 [
then, the triple scalar product\éf, V,, V5 can be written as
Lag b3 cs U
(Vi Vo Vg) = (VX Vo) Vs = ey by ¢
% b, cg
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allowing the well knavn properties of the determinants can be applied here. Every time
we swap tw rows the determinant changes sign and in our case if we swapemtors

then the left hand side of (5.3) should stay zero. If we apply this property a couple of
times we get

p' T x(Rp) =0. (5.5)

Time nav for yet another representation of the cross product. Eg. (5.4) can be rewritten in
matrix form as

bc,—b,co O OO0 -¢ b MO
V1 XV, = BclaZ — Gy B: Bcl 0 -& %bz B
b -abig o & 0 qeeg
We @n also write the dot product in matrix form:
ViV, =V, 'V, =V, TV,

Using the abee rotation we can write (5.5) as

pTTR=0
where
00 -t, t, O
T= Btz 0 -t B
oty t 0
and
[Xy O
T=gvg
1tz O
and if we do the substitution
E=TR (5.6)
we finally arrve &
pTEp=0 (5.7)

which is the celebratedpipolar constaint and in various forms has been rxanted
mary times in the history of science and engineering.

The epipolar constraint Eq. (5.7) is a very\@rent equation because it is linear in
terms of the elements & so we can compute it from a set of point correspondences.
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5.1.2. Recoveringthe E-matrix

Since Eg. (5.7) is a linear equation on the elements wé can apply it to seral
point pairsp; and p'; and get a best estimate of this matrix. But since image data are
always corrupted by noise, we need togakary more than the minimum number of
such points. The standard tool for doing that i st Squares

It is obvious that we need to do a small transformation on Eq. (5.7) to look mere lik
an equation. Matrbe

821 ) GBE
E:D4 & &
[(E7 & €[]

can be written as a vector

PEF IR

If we define vector

DZiYi B
Dz'izi O
then Eq. (5.7) can be written as
ATe=0 (5.8)

This is a homogeneous equation which means #wbre = 0 satisfies it. And if a ector

& # 0 satisfies it, ther2e, satisfies it. In plain terms this means that we cannot say if we
are looking at an object 1 ft large, 1 Way and the camera nved 1 inch, or the object is
two ft lage, two ft away and the camera nved 2 inches. So we can onlymgect to
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recoser structure and motion up to a scabfor The proportions are preserved but we
cannot tell if the object is small and close ar &vay and laige. Itis not that the infor
mation is there and we did not do the math right; it is inherently impossible to determine
the scale factor from monocular wie. Humans cannot eithend cinematographers use
this to male little ships in swimming pools look kkreal life navies.

We will see hav to handle this problem later in this section. Meanwhile weeha
solve the following problem. Image data are notoriously unreliable antbvA; contains
image data. The only way tor@come this is to use more data than we need and the
noise in the data will cancel out. The classic approach to theast Squas we um up
the squares of all the equations and minimize this sum

izgo‘iTeg :iZ%TAiAiTeS: eTéAiAiT%:eTAe

We @an try to minimize the alve quantity but we already kmothe answerThe \ector

e =0 minimizes it, but it is not what we want. There are thregsixto sole this problem.

One that seems the simplest is to arbitrarily set one elemertbdf.0 and then sodva
regular linear problem. While this has been used in practice, it it not the best because if
we are unluck and choose an element ethat is equal to zero, then we get an unstable
solution. The second approach is to minimize it, subject to the conditio that This

is a perfectly fine solutionub requires the use afagrange Multipliers. We qot for the

third solution that is mathematicaly egalent but a bit easie¥We smply minimize

_e'Ae

-2 (5.9)

which is independent of the lengthefWe row take the dervatives o A with respect to
the elementg; of e

A~ ™~ - T _ T D
04 2(eTe)bjTAe_2bjeeT Ae b; ge e)Ae—ee AeD
—_— = — 2
oe, U ﬁ 0 ﬁ

1) 1)
T o T o

wherij :aelaej and is a nine dimensional unieator adl elements of which are zero
except thej™ which is equal to one. Bknow that

b %TeAe— ee’ Ae%
Ol

0 o
forl< j <9, in other vordse'eAe—ee' Ae has a zero projection to all nine unéctors
b;. From this we can infer that

=0

e'eAe=ee’ Ae
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or

T Uae = %TAD
%eﬁe e eD

and since the parenthesized quantities are scalars

T
Ae= ee Ae
e'e
and if we use Eq. (5.9) we get
Ae=e)

in which casesis an eigewector of A and is the corresponding eigeaiue. So the min-
imum of Eq. (5.8) is attained wheris the eigewector of A that has the smallest eigen-
value (all eigemalues of A are positre).

The procedure then to firelis to form matrixA =3 A AT, compute the smallest

|
eigervalue and find the correspoinding eigector. This eigenector ise.

5.1.2.1. Solvingfor Trandation
We @an recoer the translatio if we notice the

TT=0TT)" =(TxT)" =0
so we can infer that
TTE=(T'T)R=0 (5.10)

which means thar is a vector that satisfies Eqg. (5.10). Although there are simjalgs w

to find such a ector we use a technique call8thgular Value Decompositiof5VD).

Any square matrixM, symmetric or not, can be decomposed into a product of three
matrices

M =USV'

whereU andV are orthonormal matrices (we can extend the definition vithies not
square, but this is another issue). The coluthnandV; of matricesJ andV are called

left and right singular ectors.S is a diagonal matrix with all the diagonal elememts
non ngaive. This decomposition ialmostalways unique up to some trivial transforma-
tions. \& can for instancexehange the left singulaeetorsU; andU; if we exchangeV,

with V; and o; with g; as well. Also we can replad#; with -U; if we replaceV; with

-V, as well. And finaly if one of the singulaalueso, is equal to zero then we can flip
the sign of eithed, of V|, and get way with it. There is one more complicatiorgeed-

ing the epressionalmostalways unique. On an extremely rare occasion whensgmgu-

lar values are identical there are infinite number of decompositions. According 10 Mur
phy’s Theorem matrixE always falls under this cag@ry. Neveatheless, despite the filthi-
est intentions of the Foundingathers of mathematics, all these amount to a minor
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nuisance. The reason is the fallag. The non-uniqueness of the decomposition matters
only if we decompose twmatrices and wexpect some simple relation between the
respectre mmponents, which is exactly what we need to do here. But if we decompose
one of the tw matrices and using the expected relation between the components to
decompose the other without calling the SVD functioaimghen we can makaure that

we have the right pair of decompositions.

Another way to write the decomposition is
M = _ZUiJiViT (511)
|

whereU; andV; are the columns od andV respectrely and o; are the singularalues.
From Eq. (5.11) abe it is easy to notice that if all singularalues are non zero then
Mx # O for all non-zero vectors.

Too much philosopi. Let's do ®me work. V¢ can decompose matrk into
E=U ESEVET

and since we kn there is al that satisfies Eq. (5.10), we kmahat one of the singular
values is zero. The corresponding left singular vector is parallel to the tranJate
can “find” the magnitude oF if we notice that

EET =TRR'T =TT =T,1-TT" (5.12)

from which we can find the magnitude™f We do rot need though, because the compu-
tation of R works just fine if we do not knwit but also the magnitude of thiShas noth-
ing to do with the length of the re&lwhich is indeterminent and isvedys 12 if the vec-

tor e we computed in the previous section is a ueitter So it does not matter if we
know it. By the way: Eq. (5.12) provides an altermathay to computd .

5.1.2.2. Solving for Rotation Matrix

The next step is to find the rotation matrixe Wiow T up to a sign, but it is not that
easy to findR. AlthoughE =TR, and we knav T, T is not an inertible matrix, therefore
we cannot just eliminat€ to getR. The trick this time imolves again the SVD dE and
T.

We @an decompose matric&andT into

E=UgSeVe' (5.13)

T=UrSrvo' (5.14)
We dso knav thatE = T Rso

E=U:SV;:'R

and the “uniqueness” of the SVD implies that
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UT = UE
S =S (5.15)
Vi TR=Vg'

or at least ifE has an SVD as per Eq. (5.13) thErhas an SVD as per Eq. (5.14) and
conditions of Eqg. (5.15) hold. In this case we canesfidv R and get

R=VVg'. (5.16)

The task nw is to reconstruct the SVD of Eq. (5.14) using the SVD of Eq. (5.13). The
first thing to notice is that

ULT =UTU: SV T = Spvy T

and sincéJg andT are known we ne know S;V;'. Unfortunately we know that the
first singular value o%; is zero and so eliminating it is not as simple as multiplying with
the inverse. But we kne thatV+ is an orthonormal matrix andey column (or row) of

an orthonormal matrix has unit length. Isetavea doser look atS;V; ' and the way to
proceed will become clear.

whereo, andos are the singular values & We know S; V1T, so we ow o,V,, and we
also knev that sigma is posite, o

_0Vy
, =
|Vl

and similarly forV;. We dso knav that every column (or row) of an orthonormal matrix
is orthogonal towery other column (or row). So the first column\&f is

Vi =5V, xV;

wheres; is a yet to be determined sign. And seviwee havea completeV; matrix, up to
a 9gn ambiguity We @an plug it in Eq. (5.16) and g&. Not so &st. R is a rotation
matrix, so its determinant is unjtwhereas orthogonal matricesvladeterminants that
arexl. Furthermore, iR satisfies our equations so do€R because matrik itself has
sign ambiguity So

R=s,ViVg'

wheres, is another yet to be determined sign. After brushing up our linear algebra we
can determine that the determinanfRak
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IR =515, Ve[ =1
sinceV+| = s;. Now we can determine the sign

S = SVr| Vel

which leads to tew solutions for R, both with positve determinant (sometimes called
right handed rotation matrices) depending on the valisg of

This completes our quest for the decomposition of the matri¥e get a three ay
sign ambiguityone ambiguity for the translatioregtorT and two for the rotation matrix
R, but we already sa that the tvo ambiguities for the rotation can be reduced to one
since thg lead to ngative determinants (also called lefthanded rotation matrices). But we
cannot do aything at this point for the rest of the ambiguities and just retuortramsla-
tions and tw rotations. In the next stage we seevhwe can reject all bt one of the 4
solutions.

5.1.2.3. Spurious Solutions The eight solutions that we get are not an axatiiof the
particular algorithm since tliehavea physical meaning. Four of them are easy to elimi-
nate since thehavelefthanded rotation matrices (unless of course we are doing structure
from motion in front of mirror: vanity is the deadliest of the sins for Computsonar-

ies!). Nawv let’s ®e the

Assume that we Iva the correct solution. Since wiag a rigid object in front of a
stationary camera is egalent to moving the camera in front of a stationary scene, we
choose for corenience the lateMVe pdace the cameras to their correct rektposition
and we drev lines from the nodal point (center of the lens) to the image point and then
extend them to the space. It is obvious that ttteresions from an image point in the one
camera and its corresponding point in the other camera will intersect in space. Fhe inter
section is on the 3-D point thaagrise to the images (Fig. 5.1). If theid not intersect
then there is something wrong with the refatmosition of the cameras.

If we now rotate the second camera 18@mes around the translatioector T,
then the corresponding extensions will remain coplanar and thus intersect. But as we
notice from Fig. 5.2, the intersection is behind the camera. So this is the one spurious
solution and can be distinguished from the presence of behind the camera points.

The number of solutions doubles if weraese the sign of the translation. Extensions
that were coplanar before are still coplanar and as we see in Fig. Y Silthatersect
behind the camera.

Tone can defins, in a different way and va dightly (very slightly) simpler equations. If we defiklg as
0 : : O

VT = EL‘qu . 32V2 . 52V3g
O : : O

where we se$, = V|
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World points.

First solution

N\
z/ Nodal point of

camera after
motion

!

Nodal point of
camera before motion

Actual translation

Figure 5.1: Two points are “seen” by the camera before and after motion. It is obvious that if we
draw the rays connecting the nodal point of a camera and an image and then extend
this ray into space, it will pass through the 3-D point. These extensions from two cam-
eras involving a single 3-D point, intersect each other at this point, so they are copla-
nar.

Ch. 9. Sec. 5. Relative Orientation 151



Spetsakis

Computer Vision

World points.

First solution

z/ Nodal point of
camera after

motion

Actual translation

Nodal point of
camera before motion

These are behind the camera

Second solution (spurious)
we flip the camera around T

Figure 5.2: If we rotate the right camera (the after-motion camera) 180 degrees around the trans-

152

lation vector, all the rays that were coplanar with the corresponding ray in the left cam-
era before the rotation will be coplanar after the rotation and thus intersect. The inter-
section will be behind one or the other camera. This is an impossible configuration.
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Forth solution (spurig
negaive T and
flipped around ¥

These are behind the
camera

Megative ranslatio

Nodal point of
camera after
motion

. . ] Actual translation
Third solution (spurioys
the translation is Nodal point of
camera before motion

These are behind the camera

Second solution (spurious)
we flip the camera around T

Figure 5.3: If we change the sign of T, then the after-motion camera moves to the other side and
everything is scaled by -1 including the Z distances. This way we double the number of
solutions to four. But the new ones will contain points behind the camera, so they are
spurious.

The simple algorithm to reject the spurious solutions is as follows. Compute struc-
ture for all of the four combinations of rotations and translations and for each combina-
tion count the number of points behind the camera, both before and after the motion. The

combination with the fewest behind the camera points wins.
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6. Recovering Structure
Starting again from the rigidity Eq. (5.2)
Z'p =ZRp+T.
we can assume that the motion parame®RendT are knevn and find the structurg
andZ', which are the depths of the image points. This is@or equation equélent to
three scalar ones, but weveawo unknovns. We can easily forget the one equation and
solve for our two unknowns, but then we knothis is not the best thing to do. A far better

solution is to use all three equations and find the least squares solution. So we try to mini-
mize

Q(Z',2) =(Z'p -ZRp-T)*=(Z'p - ZRp-T)'(Z'p' - ZRp-T)

from which after taking the demtives with respect to the unknowsandZ' we get

RU22) 20"z - ZRp-T) =0
) S 2pTRI(Z'p - ZRp-T) =0

which leads to

|:| prT pr _prT RpD DZI D |:| TT pl |:|
a o T Ud, U050 +1 ]
oP' Re PP gpfpo gT Reg

and simple matrix wersion gves us
DZ'D 1 0 pr pITRpDDTT pr 0

0, OF == : O, 7o 00 B
0Zg (PTRXP P -(PTRP? PTRp PP T Rpg

This gies the ability to discard the spurious solutions for the motion with thewaitp
very simple algorithm: Compute the deptBsand Z' for all four solutions and for each
one count the points that\Ved least one rggtive depth. The solution with the vieest
behind the camera points is the real one.
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