
CHAPTER 8

Optical Flow

1. ImageSequences

It is said that a picture is worth a thousand words. Whoever said this was overly
optimistic about image compression technology, but assuming it is correct we can only
imagine the worth of a sequence of images.

A digital camera can record image sequences from dynamic scenes and forward
them to a computer for processing and interpretation. The amount of raw data contained
in such a sequence is immense and it can overwhelm many a computer. But there is some
information in this data that cannot be obtained from still images namely the history of
the scene and most important, the structure of the scene and this makes the image
sequences worth their while.

The word structure usualy refers to the depth, in the form of aZ-map, but it can also
mean any other representation of the depth of the scene, like decomposition of the scene
in piecewise continuous patches approximated by splines or a set of depth values at dis-
tinct points.

The images recorded from a dynamic scene are neither identical nor totally different
from each other but have a few certain kinds of differences. The factors that contribute to
these differences are

Brightness changes
The overall brightness of an object in a scene can change due to change in amount
of ambient light (e.g. when lights go on and off or move), motion of shadows,
change in reflectance of the surface of the object (e.g. when the wind upsets the fur
of a lady, or the surface gets wet), motion of specularities etc. An important contrib-
utor in the brightness fluctuation is of course the random noise present in all cam-
eras..

Drop-ins and drop-outs
As the camera or the object move, things either fall off the border of the image, or
new things come into view after crossing the same borders. Moreover when one
object occludes another then part of the occluded object may come into view or a
visible object may hide behind another due to the motion of the camera or the
objects themselves.

Projection of 3-D motion
As the camera moves, the images of the objects move on the focal plane too. Their
motion is the projection of the 3-D motion with respect to the camera coordinate
system.

Spetsakis Computer Vision

Computer Vision Spetsakis

Change of camera parameters
The camera parameters can change and create effects similar to change in brightness
(change off-number) or motion (zoom-in and zoom-out) but can have other effects
like change of focus, change of colormap etc.

These are the most common factors of change in the image of a dynamic scene and
from all these only the projection of the 3-D motion provides information that can be uti-
lized for the recovery of the structure of the environment. The information provided by
the other factors, while relevant to the structure of the scene, are a nuisance rather than
help. The shadows, for instance, can help a human viewer interpret a scene, but there is
no applicable mathematical model or an algorithm that can help a computer do the same
thing. For this reason researchers in the Computer Vision community refer to these fac-
tors simply asnoise although it would be more honest to saythat thing we have no clue
how to model.

1.1. OpticalFlow vs. Image Flow

There are many applications where the main difference between successive images
in a sequence is due to the projection of the 3-D motion which means we know how to
model it and as a result we know how to extract the structure in these applications. This
projection of the 3-D motion is calledOptical Flow.

Unfortunately, the light intensity patterns on the image move according to the pro-
jection of the 3-D motion, but this does not mean that we can recover optical flow from
these images. Consider the image of a spinning white wheel which appears stationary. Its
optical flow is non zero, but it appears to be zero.

While optical flow is unique, the flow that appears on the image is not always
unique but this is all we have. This flow we call Image Flow to distinguish from the opti-
cal flow and the best we can hope for is to recover an image flow and hope that it is a
good approximation to the optical flow. In practice, it is just one of the difficulties that
make the motion problem interesting, and there are many applications that this is not a
problem.

1.2. AnyHope for Motion

It appears from the above that the motion problem is almost unsolvable, and indeed
it is one of the hardest in Computer Vision. But as opposed to many other problems in
vision and AI in general, it has a clear statement, can be modeled mathematically to a
large extend and the assumptions can be stated clearly. This is not the case with edge
detection, object recognition or texture classification where the research community
found the hard way that these problems are much harder than previously thought. At least
motion, we have a good enough mathematical understanding of the problem to be fully
aw are of the complexities.

2. Differential Formulation

We will attempt to form a set of equations for optical flow by restricting ourselves to
an easier version of the problem. Then we are going to ease these restrictions one after

Ch. 8. Sec. 1. Image Sequences 115

Spetsakis Computer Vision

the other until we get a practical method to determine flow from a sequence of real world
images.

2.1. Assumptions

We are going to introduce a set of assumptions that will make a differential formula-
tion possible. Some of these assumptions will be stated quantitatively with a formula, oth-
ers will be in a qualitative way to indicate that a certain kind of approximation is valid.

2.1.1. InfinitesimalFlow

The first assumption is that the interframe motion is small enough to be considered
infinitesimal. In practice this usualy means less than a pixel, but it depends on the amount
of information carried in the image. If the image contains fine texture then one pixel is
indeed the upper limit. If the image contains a smooth intensity pattern that varries very
little from one pixel to the next, then we can have larger motion and still call it infinitesi-
mal.

While this is an assumption that we will ease later, it is not unbearably restrictive.
With 30 frames per second a camera can take sequences that satisfy this assumption and
still have motion of about 30 pixels a second, which is enough to do many things. Not all
of course. Consider for example a51 2× 51 2 camera with 90 degrees field of view. It
would need 2048 frames to do a whole circle, or about 70 seconds. Certainly Nurejev did
not satisfy this assumption (even Pavaroti could beat that while eating pizza).

2.1.2. ConstantIntensity Assumption

We hav e to assume that the intensity of the projection of a 3-D point does not
change from one frame to the next. If a 3-D point registers an intensity of say 128 on our
image, then this is the intensity this point is going to have in all subsequent frames. This
assumption can be stated as

(2.1)dI (x, y, t) = 0

whereI is the image intensity which is a function of the image coordinates and time. This
simply means that the intensity remains the same and it will be the starting point for the
subsequent derivations.

This assumption holds in environments where we can control the illumination con-
ditions but it is only an approximation when we deal with general environments. We will
briefly touch upon methods that attempt to relax this assumption a bit (it does not make
sense to relax it completely, because there has to be some relation among the images of a
sequence).

2.1.3. NoDiscontinuities

This is perhaps the most painful assumption. The first reason this being so is that
there is no easy way to define discontinuities on a discrete quantity like the optical flow
we aim to compute. While the optical flow is a continuous quantity, we can only represent
it as discrete even if we knew it. So there can be no algorithm for detecting

116 Ch. 8. Sec. 2. Differential For mulation

Computer Vision Spetsakis

discontinuities, only heuristic approximations. The second reason that this is painful is
that, unlike other quantities that are functions of one or more independent variables, like
temperature versus time, where the notion of discontinuity is introduced as an approxima-
tion to a continuous and smooth quantity, discontinuities do exist in the optical flow. They
are the borders of objects occluding other objects in the scene. Which means that the dis-
continuities are the most information rich regions of an image.

This assumption is also one of the most difficult to deal with. All attempts to relax it
result in much slower algorithms. We will only briefly touch the subject.

Finally if we cannot even define the discontinuities, then how can we require their
absence? If we buy a sequence full of discontinuities, how do we know if we should ask
for our money back? The answer is how we state the assumption. It turns out the most
convenient way is to say that we attempt the estimation of the optical flow only on areas
where the flow varies smoothly.

2.1.4. OtherAssumptions

There are several other assumptions that we introduce silently because they are natu-
ral to the problem, like the requirement that the image is an adequate discretization at
least in thex andy directions so that we do not have aliasing phenomena.

2.2. OneDimensional Image

We start by studying the simplest case, that of a 1-D image moving more or less uni-
formly. We are given the image sequence and we have to find the flow u at every pixel of
the one dimensional image.At some pointx before the motion the intensity isI (x, t) and
at the same pointx after the motion the intensity isI (x, t + δ t) whereδ t is the elapsed
time. The original point moved to x + δ x whereδ x is the displacement and from the con-
stant intensity assumption we know that this point did not change intensity so that
I (x, t) = I (x + δ x, t + δ t). The only unknown here isδ x. All the other quantities are
either images and their derivatives or time, which we assume given.

If we approximate the curves with their tangents (which is OK since we assume
infinitesimal motion) we can solve the triangle
[x, I (x, t)]. .[x, I (x, t + δ t)]. .[x + δ x, I (x + δ x, t + δ t)], which is marked with bold lines

in Fig. 2.1) and we can find thatδ x =
I (x, t) − I (x, t + δ t)

I x(x, t)
. We can manipulate this

expression to get something more elegant if we notice that

I (x, t) − I (x, t + δ t) = δ tIt(x, t)

whereIt is the time derivative of the image intensity. We also substitute the flowu

u =
δ x

δ t

and we finally get

(2.2)I xu + It = 0

Ch. 8. Sec. 2. Differential For mulation 117

Spetsakis Computer Vision

Intensity

x

I (x, t)

I (x, t + δ t)

Slope ofI is
∂I

∂x

I (x, t) − I (x, t + δ t)

δ x

φ

tanφ =
∂I

∂x

x x + δ x

Figure 2.1: The one dimensional image I (x, t) moves to the right by δ x. We can find δ x by solv-
ing the triangle in bold lines (shown also in magnification near the lower right of the fig-
ure). It can be shown that δ x satisfies the equation I x(x, t)δ x = I (x, t) − I (x, t + δ t)

This is theOptical Flow Equation for one dimensional images. This is easy to extend to
two dimensions.

2.3. Two Dimensional Image

The same exactly procedure could be applied to derive the two dimensional case
too. But since repetition of the same procedure would not offer any more insight, we will
present a more algebraic derivation.

We will start from theConstant Intensity Assumption (Eq. (2.1))

dI (x, y, t) = 0

which can be written as

dI (x, y, t) =
∂I

∂x
dx +

∂I

∂y
dy +

∂I

∂t
dt

and by dividing both sides bydt we get

(2.3)I xu + I yv + It = 0

118 Ch. 8. Sec. 2. Differential For mulation

Computer Vision Spetsakis

wherev =
dx

dt
. This is theOptical Flow Equation which is often written in vector form

∇I ⋅ u + It = 0

where

u = 


u

v



and

∇I =







∂I

∂x
∂I

∂x







.

2.4. Effectsof the Assumptions

We derived the optical flow equation (Eq. (2.3)) under several assumptions, which is
bound to create some problems. Let’ s see what are these problems and what kinds of
remedies we can devise for them. We will see two kinds of problems, ones that are related
to the fact that the image is two dimensional and we have to study them as such and the
ones that apply under similar circumstances to one dimensional images as well and we
will study them in one dimension only to keep things simple.

2.4.1. EquationDeficit, Apertur e Problem

The most fundamental problem which is directly related to the pointwise application
of the intensity constancy assumption is the so calledAperture Problem. It is easy to
notice that Eq. (2.3) has two unknowns while it is just a single scalar (e.g. non-vector)
equation. Thus we know that it does not have a unique solution.

In general if a point on the image has a certain value, then, unless it is a local
extremum, there should be other points in its neighborhood that have the same value. This
might not be obvious on the discretized image, but it is true for the continuous image that
is represented by the discretized. All these points lie on a line which is called an isophote,
e.g. a line where the intensity is constant.

When the intensity pattern on the image deforms and moves, the isophotes move
along with it of course. But since Eq. (2.3) tracks the intensity it is natural that it cannot
distinguish between points on the same isophote over time. So the lack of uniqueness in
the solution is indeed the result of the constant intensity assumption and not an artifact of
the way we manipulated the equation.

2.4.1.1. RegionMatching

The only way to solve the apperture problem is to augment the constant intensity
assumption. One such way is to applyRegion Matching and match small regions rather
than single points. In order to do this we have to inv oke one of the assumptions that we
did not really use so far that of image smoothness.

Ch. 8. Sec. 2. Differential For mulation 119

Spetsakis Computer Vision

Isophote at timet

Isophote at timet + δ t

Figure 2.2: The future position of a point along an isophote is indeterminate.

The fact that the image is smooth implies that the flow at one pixel is more or less
the same with the flow of its neighbors. If we carry this observation one step further and
say that the flow (e.g.u andv) is the same on a pair of pixels, then for every such pair we
have two unknowns (the commonu andv) and two equations (by applying Eq. (2.3) on
each one of them) and we can solve the system uniquely.

We still have some small difficulties to overcome but we are close. The main diffi-
culty is that it is rather unlikely that the two equations will always be independent. What
if we always choose the left neighbor and we happen to be on a horizontal isophote? We
need then to combine the equations of a larger region, say3 × 3 or 5 × 5, to increase our
chances to have two independent equations but then we have more equations than
unknowns. Luckily there is a very elegant way to solve this problem: it is calledLeast
Squares.

2.4.1.1.1. LeastSquares

The basic idea of the least squares is simple. When we have more equations than
unknowns and the coefficients of these equations are noisy and unreliable, we have to
combine them in a way that reduces the effects of the noise, prety much the same way we
combine multiple uncertain measurements to get the average which is, in general more
reliable. Buthow do we average equations?

120 Ch. 8. Sec. 2. Differential For mulation

Computer Vision Spetsakis

The first step in applying least squares is to bring all the equations in the form
fk(x1, x2,. . .) = 0, which in our case are already in this form.

I x[i0 − i, j0 − j]u[i0, j0] + I y[i0 − i, j0 − j]v[i0, j0] + It[i0 − i, j0 − j] = 0

wherei0 and j0 are the coordinates of the center of the region we consider andi and j
range within−1. .1 for a3 × 3 region or within −2. .2 for a5 × 5 etc. The unknowns are
u[i0, j0].

The second step is to square all these equations and sum them up. This sum is
always a non negative quantity. If could find a pair ofu and v that could satisfy all the
equations simultaneously then the sum would be zero, otherwise it is positive. It is easy to
see that the closer we are to satisfy all the equations at the same time the closer to zero
the sum should be. Our goal then is to find theu andv that make this sum minimum.

The sumS can be written as

S[i0, j0] =
i, j in R
Σ





I x[i0 − i, j0 − j]u[i0, j0] + I y[i0 − i, j0 − j]v[i0, j0] + It[i0 − i, j0 − j]




2

whereR is the region centered ati0, j0. The above expression is fine but weighs the pixels
close to the center of the region the same as the pixels further away. It is obvious that we
could do a bit better if we weighed the pixels near the center heavier than those away
from it. This can be done by introducing a templatew[i, j] that has the appropriate form
(usualy bell shaped).

(2.4)

S[i0, j0] =

i, j
Σ w[i, j]





I x[i0 − i, j0 − j]u[i0, j0] + I y[i0 − i, j0 − j]v[i0, j0] + It[i0 − i, j0 − j]




2

We can minimizeS the way we minimize any function, by taking the derivatives
with respect to the unknowns u and v and setting them to zero. We start with the
derivative with respect tou.

Ch. 8. Sec. 2. Differential For mulation 121

Spetsakis Computer Vision

∂
∂u[i0, j0]

S[i0, j0] =
∂

∂u[i0, j0] i, j
Σ w[i, j]{ I x[i0 − i, j0 − j]u[i0, j0] +

I y[i0 − i, j0 − j]v[i0, j0] + It[i0 − i, j0 − j]




2

i, j
Σ w[i, j]

∂
∂u[i0, j0]





I x[i0 − i, j0 − j]u[i0, j0] + I y[i0 − i, j0 − j]v[i0, j0] + It[i0 − i, j0 − j]




2

=

i, j
Σ w[i, j]2I x[i0 − i, j0 − j]





I x[i0 − i, j0 − j]u[i0, j0] + I y[i0 − i, j0 − j]v[i0, j0] + It[i0 − i, j0 − j]




=

2





 i, j
Σ w[i, j] I x[i0 − i, j0 − j]2


u[i0, j0] + 

 i, j
Σ w[i, j] I x[i0 − i, j0 − j] I y[i0 − i, j0 − j]


v[i0, j0] +


 i, j
Σ w[i, j] I x[i0 − i, j0 − j] It[i0 − i, j0 − j]





.

It is easy to notice that the summations are actually convolutions

i, j
Σ w[i, j] I x[i0 − i, j0 − j]2 = I x

2(*)w

and similarly for the rest. We can rename these quantities

E xx = I x
2(*)w

E xy = I x I y(*)w

E xt = I x It(*)w.

So finally the equation becomes

E xxu + E xyv + E xt = 0.

If we apply the same derivative with respect tov we get

(2.5)




E xx

E xy

E xy

E yy







u

v



= −




E xt

E yt




.

The solution of this system is very simple because it is a2 × 2 system and the coefficients
are easy to compute because the involve only a a few simple operations like convolution,
multiplication etc. This is the heart of theLucas and Kanade algorithm, which performs
extremely well. In fact it outperforms many much more sophisticated and computation-
ally expensive algorithms.

2.4.1.1.2. Algorithm

Among the nicest things about this algorithm is how easy it is to implement.
Assume that the two successive images areim1 andim2 we compute theE xx etc first:

122 Ch. 8. Sec. 2. Differential For mulation

Computer Vision Spetsakis

gtmpl = mk_gauss_tmpl(sigma);
Ix = D_x(im1);
Iy = D_y(im1);
It = im2 - im1;
Exx = (Ix * Ix) (*) gtmpl;
Exy = (Ix * Iy) (*) gtmpl;
Eyy = (Iy * Iy) (*) gtmpl;
Ext = (Ix * It) (*) gtmpl;
Eyt = (Iy * It) (*) gtmpl;

and then invert the matrix using Kramer’s rule (or anything else that is convenient).
Instead of having a doublefor loop to invert the matrix at every pixel we apply the cor-
responding operations toExx, Exy etc which are images
det = - 1.0 / (Exx*Eyy - Exy*Exy);
u = (Eyy*Ext - Exy*Eyt)*det;
v = (-Exy*Ext + Exx*Eyt)*det;

2.4.1.2. Color

Since the apperture problem is caused mainly from the equation deficit, any intro-
duction of new independent equations would solve it. One such source is color. We can
get one independent equation per color band and combine them with least squares.

Unfortunately, this is more interesting as an application of the least squares idea in
the context of optical flow, rather than practical. There are several reasons for that. One is
that the colors do not change independently of each other, so they tend to produce inter-
dependent equations. Second, cameras tend to degrade color terribly because most of
them are designed to produce images to be viewed by humans and not analyzed by
machines. Humans have much lower color resolution than gray resolution and do not
mind the color degradation. But this will make the resulting optical flow equations even
more interdependent.Nevertheless, the use of color in controlled situations, where it
lighting can be engineered in a way that produces mostly independent equations, is bene-
ficial. And we can handle it the same way we handled region matching.

Proceeding as before, we get exactly the same equations with the exception thatE xx ,
E xy etc are now

E xx =
c in{ r,g,b}

Σ I c
x
2

E xy =
c in{ r,g,b}

Σ I c
x I c

y

E yy =
c in{ r,g,b}

Σ I c
y
2

E xt =
c in{ r,g,b}

Σ I c
x I c

t

E yt =
c in{ r,g,b}

Σ I c
y I c

t.

Ch. 8. Sec. 2. Differential For mulation 123

Spetsakis Computer Vision

These equations are not more complicated than the previous ones and the least squares
technique proves once again its elegance and power. Although it is a simple way to aver-
age equations, its power is astonishing.

2.4.2. HigherOrder Effects

One of the assumptions we did was that the motion is assumed infinitesimal. The
effects of this assumption can be seen even when the motion is as small as it can practi-
cally be. Consider the following case, where we have an 1-D smooth bell-like curve mov-
ing to the right, by a small amount (Fig. 2.3). The curve before and after the motion are
shown at the top of the picture. The effects we will see hold in the same manner in 2-D.

A simple application of Eq. (2.3) will give an acceptable result in all cases except
the peak in the middle of the curve. At this point the derivative I x (second curve) is
crossing zero which will produce a mathematical error. This is not a case of mathematical
indeterminacy, which means that our formulas cannot produce a valid answer, because
the time derivative It (third curve) is not zero so we do not have a zero by zero division.

The problem of the mathematical error is fairly easy to solve using the region
matching technique of the previous section. But the answer we get (bottom curve) is mis-
leading near the peak. While the correct answer should be in this case a constant number,
the curve has a wild swing and it even produces motion in the opposite direction. This is a
very annoying phenomenon, because it appears on an almost ideal situation of a very
smooth curve, with very small motion and no noise.

Figure 2.3: The top graph shows an 1-D signal before and after the motion. The second graph is
the spatial derivative of the signal, the third the time derivative and the for th is the com-
puted flow using 3 pixel wide regions.

124 Ch. 8. Sec. 2. Differential For mulation

Computer Vision Spetsakis

The heart of the problem is that at the peak of the curve, the equations should be
indeterminate. But due to the asymmetry in the way we compute the spatial derivative I x

by applying the derivative operator on either the image before the motion or after, the
zeros of the numerator (the time derivative It) and the denominator (spatial derivative I x)
do not coincide, so the indeterminacy does not materialize. If instead we use as spatial
derivative the average of the spatial derivatives before and after the motion then we get
much better results (Fig. 2.4). The improvement of the accuracy of the algorithm is aston-
ishing.

2.4.3. Temporal Aliasing

So far we have assumed that the motion is small and does not produce more than
about one pixel optical flow. Under these circumstances we can assume that the motion is
infinitesimal in practice. But we do not always have the luxury of so small motion. So we
have to see what is the result of the violation of this assumption and how it can be dealt
with.

Consider an image with a fine texture like a plaid cloth, a brick wall, a pebble beach,
tree foliage etc. All these textures have the property that the same pattern is repeated
although it is not repeated in a strictly periodic sense. Let’s say tha for the sake of exam-
ple that the same pattern is more or less repeated every ten pixels. If the interframe flow is
also around the same value then any flow algorithm that matches intensity patterns of pix-
els or regions, will be confused.

Take for instance the case of a pebble beach where we want to find the flow at a
pixel that corresponds to the center of a particular pebble. If the next frame of the image
sequence has moved about 10 pixels so that another pebble occupies the same space, then

Figure 2.4: If we use a more symmetric spatial derivative the resulting flow is much closer to a
constant than before.

Ch. 8. Sec. 2. Differential For mulation 125

Spetsakis Computer Vision

flow algorithms of the kind that we saw so far will match the old pebble with the new
pebble and return as result a flow that is closer to zero rather than ten.

This problem is not particular to two dimensions but works the same way in one
dimension. To see it better consider a smooth curve that has two peaks (Fig. 2.5) and
moves enough pixels, so that the one hump goes near the place where the other hump was
before. It is obvious that a simple algorithm that just looks at intensities, will confuse the
two humps and create a false match. This false match will appear in this case as flow in
the wrong direction (the part of the flow that is negative). The finer the detail and the
larger the motion the easiest it is for this problem to arise.

This is another problem that has a quite good solution. The idea is very simple.
Since in practice an optical flow that is less then one pixel is small, then if we have large
flow we can shrink the picture to half the original size and apply the algorithm on the
smaller scale where the flow is half the original size (Fig. 2.6. Then when we solve the
problem, we can use this low resolution solution as a guess to get a head start to the origi-
nal problem.

When we are at the lower resolution, the problem is easier but not always readily
solvable. But since we have discovered a low resolution hammer, everything looks like a
nail. We can apply the technique recursively until we go to a very coarse resolution where
we apply our favorite algorithm.

Figure 2.5: If the interframe motion is large like the top plot, a single scale algorithm that is based
on intensity matching will confuse one hump with the other. This is apparent in the bot-
tom plot which depicts the flow being negative, which means it points in the opposite di-
rection.

126 Ch. 8. Sec. 2. Differential For mulation

Computer Vision Spetsakis

Figure 2.6: Before we go to a low er resolution we need to smooth the image to get rid of the fine
detail that will only create aliasing problems. As a result, at some lower resolution the
two humps will look like one and the original flow algor ithm will not be confused. The
bottom plot is quite close to the ground truth and is never in the wrong direction.

2.5. OtherTechniques

2.5.1. AffineMotion

2.5.2. SmoothnessConstraints

The flow in real image sequences is piecewise continuous, which in plain terms
means that the image is a patchwork of areas where the flow is continuous which are sep-
arated by lines of discontinuity. Assuming that we are working wholly within a patch of
the image where the flow is continuous we can recover the flow using the techniques
mentioned above. But despite our best effort the flow will look rough and jagged.

There are two mechanisms that conspire to create this problem. The one is the small
amount of noise in the images, either random noise, discretization noise, motion blur
ev en violation of the assumptions, that always tends to get amplified. The other is that we
do not have any mechanism to tell our programs to prefer the smoother solution among
more or less equally probable ones. An obvious, simple and effective way to solve both
problems is to use larger regions when we do the matching. This has some unwanted side
effects like tends to overblur a bit but overall works fine.

We wouldn’t introduce a subsection just to say this, would we? This is a solution
that is obvious after reading the previous sections. But it is an excellent opportunity to
introduce a set of mathematical techniques while presenting an alternative solution to the
same problem.

We will try to modify Eq. (2.5) in such a way that the result of the minimization will
almost minimize the sum of the squares of Eq. (2.3) but it will show a preference for

Ch. 8. Sec. 2. Differential For mulation 127

Spetsakis Computer Vision

smoother solutions. In other words we will trade loyalty towards Eq. (2.3) for some
smoothness. After all Eq. (2.5) is approximate itself.

We use the same powerful least squares tool again with some modification. We do
not minimize the sum of squares of Eq. (2.3) alone but in combination with some other
term that imposes some smoothness on the solution. This solution will minimize the sum
of the old terms and this new term. But we have to go one step further before we can use
this technique.

In Eq. (2.4) we summed over a single region only because we matched each region
independently. And our unknowns where only two for this reason. But now we attempt
something much more daring. We try to impose a property that is not strictly local since
by looking at an isolated pixel we cannot tell if its flow is smooth. We hav eto see a few
of its neighbors too. So instead of solvingN × N small systems with two unknowns, we
solve a single system with2N × 2N unknowns (whereN × N is the resolution of the
image).

So Eq. (2.4) becomes

(2.6)

Sphys =
i0, j0
Σ S[i0, j0] =

i0, j0
Σ

i, j
Σ w[i, j]





I x[i0 − i, j0 − j]u[i0, j0] + I y[i0 − i, j0 − j]v[i0, j0] + It[i0 − i, j0 − j]




2

which represents thephysical constraint, e.g. the set of conditions imposed to the solution
from the problem. Now, we hav eto introduce thea priori constraints, e.g. constraints that
we know in advance, like that this particular part of the image is smooth.

In order to use this a priori constraint with the least squares it has to be expressed by
a term that is a real function of the image flow, it is always positive, it is small for smooth
flows and large for rough ones. Clearly there are many choices depending on what
exactly we mean by “smooth” and how much cpu time we are prepared to spend.The
simplest and most intuitive is the sum of squares of the derivatives of the flow which can
be expressed as

(2.7)Ssmooth =
i0, j0
Σ





ux[i0, j0]
2 + uy[i0, j0]

2 + vx[i0, j0]
2 + vy[i0, j0]

2



.

where the subscript denotes the corresponding derivative. It is obvious that such a
smoothness term satisfies the above mentioned criteria.

The beauty of least squares is that various constraints can be combined by simply
adding them so we have to minimize

S = Sphys + λSsmooth

whereλ is a constant we choose so that the smoothness term has a small but not negligi-
ble effect.

128 Ch. 8. Sec. 2. Differential For mulation

Computer Vision Spetsakis

The next step is to minimizeS. The unknowns here are all theu[i0, j0]s andv[i0, j0]s
in other words two unknowns per pixel. This may sound like many but the procedure to
obtain the equations for the minimazation is exactly the same. We take the derivative of S
with respect to each one of the unknowns. To keep things simple we do each term sepa-
rately. The physical term will give exactly the same results as before, so we do not worry
about this. The smoothness term is really four distinct terms, but very similar to each
other. We will show the derivation of only one of them and the rest will be similar. The
next step is to add all five of them (the physical and the four smoothness) and derive an
equation that we can solve.

Let’s derive the normal equation for one of the four terms

i0, j0
Σ ux[i0, j0]

2

which we will differentiate with respect to one of the unknowns which are all theus and
vs, sayu[k, l]

∂
∂u[k, l] i0, j0

Σ ux[i0, j0]
2

which can be transformed to

(2.8)
i0, j0
Σ 2ux[i0, j0]

∂
∂u[k, l]

ux[i0, j0]

and now we hav e to take the derivative of ux[i0, j0] with respect tou[k, l]. This looks
complicated but it is not.

Admitedly, taking the derivative of the derivative of a function with respect to the
function sounds confusing. So we go back to the basic definitions. We know that u is a
discretized version of the flow and that when we take derivative with respect tox we
actualy convolve u with a templateb. So we use this to get

∂ux[i0, j0]

u[k, l]
=

∂
u[k, l] m

Σ b[m]u[i0, j0 − m] =

m
Σ b[m]

∂
u[k, l]

u[i0, j0 − m].

The derivative of u at one point with respect tou at a different point is almost always
zero, because eachu is an independent variable. The only case of course that this is equal
to one is when the points are identical. This can be written as

∂
u[k, l]

u[i0, j0 − m] = δ [k − i0]δ [j0 − m − l]

So

Ch. 8. Sec. 2. Differential For mulation 129

Spetsakis Computer Vision

∂ux[i0, j0]

u[k, l]
=

m
Σ b[m]δ [k − i0]δ [j0 − m − l] = δ [k − i0]b[j0 − l]

Now that we know this derivative we can substitute it and continue on Eq. (2.8) from
where we stopped

∂
∂u[k, l] i0, j0

Σ ux[i0, j0]
2 =

i0, j0
Σ 2ux[i0, j0]δ [k − i0]b[j0 − l]

and we can simplify the double summation to simple by eliminatingi0 by making use of
the properties of theδ function

j0
Σ2ux[i0, j0]b[j0 − l]

which is nothing more than a convolution. There is a catch though. If it was a regular con-
volution then the index of b would be b[l − j0] and not b[j0 − l]. This means that the
derivative templateb is flipped around zero and since it is an odd template (changes sign
if flipped) we can just change sign. So finaly

∂
∂u[k, l] i0, j0

Σ ux[i0, j0]
2 = −uxx[k, l]

This is a beautifull equation that we derived using descrete techniques. We could also use
continuous techniques and derive exactly the same thing. These continuous techniques
are calledCalculus of Variations.

If we put the whole thing together we cannot write it as a simple matrix expression
as in Eq. (2.5), because the equation about the flow in one pixel depends on the flow of
the surrounding pixels. So we write it as

−λ(uxx + uyy) + E xxu + E xyv + E xt = 0

−λ(vxx + vyy) + E xyu + E yyv + E yt = 0

And how do we solve this equation that involves both theus and vs and their derivatives?
Mathematicians call these things differential equations, a dreadful name indeed, but justi-
fiably so. How do we solve them? There are two cases: The continuous, which we cannot
solve, and all we do is guess a solution and try to verify it (mathematicians have con-
spired to invent all kind of nice theories to hide this ugly detail of their trade) and the
descrete which can be reduced to the solution of a huge linear system. This we know how
to solve. Use a high quality numerical computation library.

130 Ch. 8. Sec. 2. Differential For mulation

