CHAPTER 8

Optical Flow

1. ImageSequences

It is said that a picture is worth a thousandras. Whoeer said this was wverly
optimistic about image compression technoldmyt assuming it is correct we can only
imagine the worth of a sequence of images.

A digital camera can record image sequences from dynamic scenes aaddforw
them to a computer for processing and interpretation. The amouw ofta contained
in such a sequence is immense and it c@nadielm mary a computer But there is some
information in this data that cannot be obtained from still images namely the history of
the scene and most important, the structure of the scene and this makes the image
sequences worth their while.

The word structure usualy refers to the depth, in the form d&-anap, but it can also
mean aw other representation of the depth of the scene,ddcomposition of the scene
in piecavise continuous patches approximated by splines or a set of depth values at dis-
tinct points.

The images recorded from a dynamic scene are neither identical nor totalgrdif
from each other but lka a w certain kinds of differences. The factors that contribute to
these differences are

Brightness changes
The overall brightness of an object in a scene can change due to change in amount
of ambient light (e.g. when lights go on and of move), motion of shades,
change in reflectance of the surface of the object (e.g. when the wind upsets the fur
of a lady or the surface gets wet), motion of specularities etc. An important contrib-
utor in the brightness fluctuation is of course the random noise present in all cam-
eras..

Drop-ins and drop-outs
As the camera or the object wep things either fall dfthe border of the image, or
new things come into vig after crossing the same borders. Mar@owhen one
object occludes another then part of the occluded object may come wtorvae
visible object may hide behind another due to the motion of the camera or the
objects themselves.

Projection of 3-D motion
As the camera nwas, the images of the objects weom the focal plane too. Their
motion is the projection of the 3-D motion with respect to the camera coordinate
system.
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Change of camera parameters
The camera parameters can change and crdatesefimilar to change in brightness
(change of-number) or motion (zoom-in and zoom-out) but cavehaher efects
like change of focus, change of colormap etc.

These are the most common factors of change in the image of a dynamic scene and
from all these only the projection of the 3-D motion provides information that can be uti-
lized for the recwery of the structure of the environment. The information provided by
the other factors, while ralant to the structure of the scene, are a nuisance rather than
help. The shadows, for instance, can help a humavevimterpret a scene, but there is
no applicable mathematical model or an algorithm that can help a computer do the same
thing. For this reason researchers in the Computer Vision community refer to #itese f
tors simply ashoise although it would be more honest to ghst thing we have no clue
how to model.

1.1. Optical Flow vs. Image Flow

There are manapplications where the main tBfence between successimages
in a sequence is due to the projection of the 3-D motion which means wehknoto
model it and as a result we kmdow to extract the structure in these applications. This
projection of the 3-D motion is call€dptical Flow.

Unfortunately the light intensity patterns on the imagevwaaccording to the pro-
jection of the 3-D motion, ui this does not mean that we can xecmptical flov from
these images. Consider the image of a spinning white wheel which appears stdteonary
optical flav is non zero, but it appears to be zero.

While optical flav is unique, the flav that appears on the image is nowais
unique lut this is all we hae. This flov we all Image Flow to distinguish from the opti-
cal flov and the best we can hope for is to ne®oan image flov and hope that it is a
good approximation to the optical Woln practice, it is just one of the difulties that
make the motion problem interesting, and there are yragplications that this is not a
problem.

1.2. AnyHope for Motion

It appears from the alwe that the motion problem is almost unsolvable, and indeed
it is one of the hardest in Computer Vision. But as opposed ty othar problems in
vision and Al in general, it has a clear statement, can be modeled mathematically to a
large exttend and the assumptions can be stated cleHnig is not the case with edge
detection, object recognition or texture classification where the research community
found the hard ay that these problems are much harder than previously thought. At least
motion, we hae a god enough mathematical understanding of the problem to be fully
awae of the complexities.

2. Differential Formulation

We will attempt to form a set of equations for opticairloy restricting ourseles to
an easier version of the problem. Then we are going to ease these restrictions one after
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the other until we get a practical method to determimve fiflom a sequence of reabwd
images.

2.1. Assumptions

We ae going to introduce a set of assumptions that willerealdfferential formula-
tion possible. Some of these assumptions will be stated quaeljtatith a formula, oth-
ers will be in a qualitate way to indicate that a certain kind of approximation is valid.

2.1.1. Infinitesimal Flow

The first assumption is that the interframe motion is small enough to be considered
infinitesimal. In practice this usualy means less than a piuelf depends on the amount
of information carried in the image. If the image contains fine texture then one pixel is
indeed the upper limit. If the image contains a smooth intensity patternatiigswery
little from one pixel to the next, then we carvédarger motion and still call it infinitesi-
mal.

While this is an assumption that we will ease |ates not unbearably restricte.
With 30 frames per second a camera caa faguences that satisfy this assumption and
still have notion of about 30 pigls a second, which is enough to do yndrings. Not all
of course. Consider forxample a512x 512 camera with 90 degrees field of wielt
would need 2048 frames to do a whole circle, or about 70 seconds. CertainlywNiideje
not satisfy this assumptionv@ Pavaroti could beat that while eating pizza).

2.1.2. Constantntensity Assumption

We haveto assume that the intensity of the projection of a 3-D point does not
change from one frame to thexhef a 3-D point registers an intensity of say 128 on our
image, then this is the intensity this point is going teeha dl subsequent frames. This
assumption can be stated as

di(x,y,t)=0 (2.1)

wherel is the image intensity which is a function of the image coordinates and time. This
simply means that the intensity remains the same and it will be the starting point for the
subsequent destions.

This assumption holds in @nonments where we can control the illumination con-
ditions but it is only an approximation when we deal with general environmeataillW
briefly touch upon methods that attempt to relax this assumption a bit (it does mot mak
sense to relax it completelyecause there has to be some relation among the images of a
sequence).

2.1.3. NoDiscontinuities

This is perhaps the most painful assumption. The first reason this being so is that
there is no easy ay to define discontinuities on a discrete quantitg tile optical flov
we aim to compute. While the opticalvilas a ontinuous quantitywe can only represent
it as discrete \wen if we knew it. So there can be no algorithm for detecting
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discontinuities, only heuristic approximations. The second reason that this is painful is
that, unlike aher quantities that are functions of one or more independent variabges, lik
temperature versus time, where the notion of discontinuity is introduced as an approxima-
tion to a continuous and smooth quantigcontinuities do exist in the optical WoThey

are the borders of objects occluding other objects in the scene. Which means that the dis-
continuities are the most information rich regions of an image.

This assumption is also one of the most difficult to deal with. All attempts to relax it
result in much slower algorithms.eMill only briefly touch the subject.

Finally if we cannot een define the discontinuities, thenwaan we require their
absence? If we buy a sequence full of discontinuities,dmwe kow if we should ask
for our mong back? The answer is iwowe date the assumption. It turns out the most
cornvenient way is to say that we attempt the estimation of the optiealoidy on areas
where the flov varies smoothly.

2.1.4. OtherAssumptions

There are seral other assumptions that we introduce silently becaugeatbenatu-
ral to the problem, li& the requirement that the image is an adequate discretization at
least in thex andy directions so that we do notveadiasing phenomena.

2.2. OneDimensional Image

We dart by studying the simplest case, that of a 1-D image moving more or less uni-
formly. We ae gien the image sequence and weédd find the flov u at every pixel of
the one dimensional imagét some pointx before the motion the intensity li¢x, t) and
at the same point after the motion the intensity igx, t + dt) wheredt is the elapsed
time. The original point meed to x + dx wheredx is the displacement and from the con-
stant intensity assumption we kmadhat this point did not change intensity so that
[(x,t) =1 (x+dx,t+dt). The only unknan here isox. All the other quantities are
either images and their deatives or ime, which we assume\gn.

If we approximate the cues with their tangents (which is OK since we assume
infinitesimal motion) we can sadv the triangle
[X, 1% O] [%, 1 (X, t+dt)]..[x+IX, 1 (x+IX,t+dt)], which is marked with bold lines
N , [(x,t) = 1(x,t+3t) . .
in Fig. 2.1) and we can find thdtx = (x.0) . We @n manipulate this
X ]

expression to get something moregai if we notice that
[(x,t) = [(X,t+at) =atli(x,1)

wherel, is the time dewuiative d the image intensityWe dso substitute the flow
OX
u=—
ot

and we finally get
l,u+1;=0 (2.2)
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Figure 21: The one dimensional image | (X, t) moves to the right by dX. We can find d X by solv-
ing the triangle in bold lines (shown also in magnification near the lower right of the fig-
ure). It can be shown that J X satisfies the equation | (X, t)dx = 1(X,t) = I (X, t + Jt)

This is theOptical Flow Equation for one dimensional images. This is easy to extend to
two dimensions.

2.3. Two Dimensional Image

The same »actly procedure could be applied to gerihe two dmensional case
too. But since repetition of the same procedure would not offemanre insight, we will
present a more algebraic detion.

We will start from theConstant Intensity Assumption (Eq. (2.1))
di(x,y,t)=0
which can be written as

ol ol ol
di(x,y,t) = &dx+®dy+a—tdt

and by dividing both sides It we get
Ixu+l,v+1;=0 (2.3)
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wherev = a This is theOptical Flow Equation which is often written in vector form
Oltu+1,=0

where

and

q

=
I
I]__ID
2
OoD00

(|
)
X

2.4. Effectsof the Assumptions

We cerived the optical flev equation (Eq. (2.3)) underweal assumptions, which is
bound to create some problems. Let’ s see what are these problems and what kinds of
remedies we can devise for theme Wl see two kinds of problems, ones that are related
to the fact that the image isavgimensional and we ka © fudy them as such and the
ones that apply under similar circumstances to one dimensional images as well and we
will study them in one dimension only to keep things simple.

2.4.1. EquationDeficit, Aperture Problem

The most fundamental problem which is directly related to the pointwise application
of the intensity constagcassumption is the so callefperture Problem. It is easy to
notice that Eqg. (2.3) has daunknonvns while it is just a single scalar (e.g. nactor)
equation. Thus we kmothat it does not he a unique solution.

In general if a point on the image has a certalue; then, unless it is a local
extremum, there should be other points in its neighborhood thattia same value. This
might not be obvious on the discretized image, but it is true for the continuous image that
is represented by the discretized. All these points lie on a line which is called an isophote,
e.g. a line where the intensity is constant.

When the intensity pattern on the image deforms andesndhe isophotes me
along with it of course. But since Eq. (2.3) tracks the intensity it is natural that it cannot
distinguish between points on the same isophate tone. So the lack of uniqueness in
the solution is indeed the result of the constant intensity assumption and not an artifact of
the way we manipulated the equation.

2.4.1.1. RegiorMatching

The only way to sole the apperture problem is to augment the constant intensity
assumption. One such way is to apphlgion Matching and match small regions rather
than single points. In order to do this weséd invoke ane of the assumptions that we
did not really use so far that of image smoothness.
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Isophote at time + Jt

Isophote at time

Figure 22: The future position of a point along an isophote is indeterminate.

The fact that the image is smooth implies that the #d ane pixel is more or less
the same with the flo of its neighbors. If we carry this observation one step further and
say that the flv (e.g.u andv) is the same on a pair of pixels, then feery such pair we
have wwo unknowns (the commom andv) and two equations (by applying Eq. (2.3) on
each one of them) and we can satve system uniquely.

We dill have ssme small dificulties to wercome but we are close. The mainfielif
culty is that it is rather unlikely that the dvequations will alvays be independent. What
if we always choose the left neighbor and we happen to be on a horizontal isopleote? W
need then to combine the equations of a larger regior s8yor 5x 5, to increase our
chances to he two independent equations but then weveharore equations than
unknavns. Luckily there is a very edent way to sole this problem: it is called.east
Squares.

2.4.1.1.1. LeasBquares

The basic idea of the least squares is simple. When we rhare equations than
unknavns and the co@€ients of these equations are noisy and unreliable, we ba
combine them in a ay that reduces the effects of the noise, prety much the same way we
combine multiple uncertain measurements to get Weeage which is, in general more
reliable. Buthow do we aerage equations?

120 Ch. 8. Sec. 2. Differential Formulation



Computer Vision Spetsakis

The first step in applying least squares is to bring all the equations in the form
fr (X4, X2, ) =0, which in our case are already in this form.

I dio =1, jo = J]ulio, Jol + Iylio =1, jo = IV[io, Jol + Ilio =1, jo— j] =0

whereig and j, are the coordinates of the center of the region we consider aamai|
range within—1..1 for a3 x 3 regon or within-2..2 for a5x5 etc. The unknowns are
ulio, jol-

The second step is to square all these equations and sum them up. This sum is
always a non ngdive quantity If could find a pair olu andv that could satisfy all the
equations simultaneously then the sum would be zero, otherwise it isg@dsis easy to
see that the closer we are to satisfy all the equations at the same time the closer to zero
the sum should be. Our goal then is to findulaadv that male this sum minimum.

The sumS can be written as

[
Slio. jol = 2 Oulio=1,jo= ilulio. jol + Ilio =1, jo = JIVlio: jol + Ilio =1, jo = J10
i,jinR ] ]

whereR is the region centered igf jo. The aboe expression is fine but weighs the pix
close to the center of thegien the same as the pixels furtherag. It is cbvious that we
could do a bit better if we weighed the pixels near the center heavier than wayse a
from it. This can be done by introducing a templafg j] that has the appropriate form
(usualy bell shaped).

io, jol =
SO (24)
%W[hJ]Eﬁx['O_',Jo_J]UUo,Jo]+|y[|o_',Jo_J]V['o1Jo]+|t['o_',Jo_J]B

We @n minimizeS the way we minimize anfunction, by taking the destives
with respect to the unkmms u and v and setting them to zero. \gart with the
derivative with respect tau.
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au[lo, j lorJol = au[uo, il ¢

Z Wi, jl{1dio =1, jo — j]ulio, jo +

Wio =i, jo= [IVlio jol + i =1 jo— J]B

D
6u[|o,JO] Oxlio =1, jo = i]ulio, jO]+Iy[iO_i1jO_j]V[i01j0]+|t[i0_i,jo‘j]g =

%W[ il

N [
%W[i, 120 Jio =1, jo - J']Elx[io—i, Jo— Jlulio, jol + Wylio =1, jo = JIVIio: jol * Iilio =1, jo = i]g=

%:wn 100 =i o= i1l o + (Z wl. i1Lfio =i, jo= i1,fio =i, o= 1 Yo idl +
eRUMIPCRIE o—j]It[io—i,jo—n%

It is easy to notice that the summations are actuallyabatons
> wli, j1L{io =1, jo = jI* = LA w
0]

and similarly for the rest. &can rename these quantities
Ex = 1,X()W
Ex = Ixl,()W
Ex = Ixl{(*)w.

So finally the equation becomes

ExU+Egyv+Ey =0.

If we apply the same destive with respect tosr we get

B BypHo. ey (2.5)
£, E, VD Ev '

O=xy
The solution of this system iRy simple because it is2a 2 system and the coigients
are easy to compute because thvelire only a a fev simple operations lig convolution,
multiplication etc. This is the heart of thecas and Kanade algorithm, which performs
extremely well. In fact it outperforms mgmimuch more sophisticated and computation-
ally expensre dgorithms.

2.4.1.1.2. Algorithm

Among the nicest things about this algorithm isvheasy it is to implement.
Assume that the twvsuccessie images aré mlL andi n2 we compute thé&,, etc first:
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gtmpl = mk_gauss_tmpl(sigma);

Ix = D_x(iml);
ly = D_y(iml);
It =im2 -im1;

Exx = (Ix*Ix) (*) gtmpl;

Exy = (Ix*1y) (*) gtmpl;

Eyy =(ly*ly) (*) gtmpl;

Ext=(Ix*It) (*) gtmpl;

Eyt=(ly *It) (*) gtmpl;

and then imert the matrix using Krames’rule (or anything else that is o@mient).
Instead of having a doubfeor loop to irvert the matrix at eery pixel we apply the cer
responding operations Exx, Exy etc which are images

det =- 1.0/ ( ExX*Eyy - EXy*EXxy );

u = (Eyy*Ext - Exy*Eyt)*det;

v = (-Exy*Ext + Exx*Eyt)*det;

2.4.1.2. Color

Since the apperture problem is caused mainly from the equation defycityten
duction of nev independent equations would solit. One such source is colMe an
get one independent equation per color band and combine them with least squares.

Unfortunately this is more interesting as an application of the least squares idea in
the context of optical flg, rather than practical. There areaal reasons for that. One is
that the colors do not change independently of each, aibdrey tend to produce inter
dependent equations. Second, cameras tendgi@ake color terribly because most of
them are designed to produce images to be viewed by humans and not analyzed by
machines. Humans @ nuch lower color resolution than gray resolution and do not
mind the color degradation. But this will nealhe resulting optical fl@ equations een
more interdependentNevertheless, the use of color in controlled situations, where it
lighting can be engineered in a way that produces mostly independent equations, is bene-
ficial. And we can handle it the same way we handled region matching.

Proceeding as before, we ggaetly the same equations with the exception Ehat
E,y etc are now

Eo= 3 1%°
cin{r,g,b}

Ew= 2 [I%I5
cin{r,g,b}

Ey= 2 ICy2
cin{r,g,b}

Ex= 2 I%I%
cin{r,g,b}

Evn= 2 15I1%
cin{r,g,b}
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These equations are not more complicated than the previous ones and the least squares
technique prees once a@in its elgance and paer. Although it is a simple way tover-
age equations, its power is astonishing.

2.4.2. HigherOrder Effects

One of the assumptions we dicasvthat the motion is assumed infinitesimal. The
effects of this assumption can be seeenevhen the motion is as small as it can practi-
cally be. Consider the following case, where weeha 1-D smooth bell-lile aurve mov-
ing to the right, by a small amount (Fig. 2.3). The eumwfore and after the motion are
shown at the top of the picture. The effects we will see hold in the same manner in 2-D.

A simple application of Eq. (2.3) will ge an acceptable result in all casescept
the peak in the middle of the cerv At this point the devetive |, (second curve) is
crossing zero which will produce a mathematical effbis is not a case of mathematical
indeterminag, which means that our formulas cannot produce a valid anbeegiuse
the time dewative I, (third curve) is not zero so we do novba zro by zero division.

The problem of the mathematical error is fairly easy toesabing the rgion
matching technique of the ptieus section. But the answer we get (bottom curve) is mis-
leading near the peak. While the correct answer should be in this case a constant number
the cune has a wild swing and itven produces motion in the opposite direction. This is a
very annoying phenomenon, because it appears on an almost ideal situatioergf a v
smooth curve, with very small motion and no noise.

__

v

Figure 23: The top graph shows an 1-D signal before and after the motion. The second graph is
the spatial derivative of the signal, the third the time derivative and the forth is the com-
puted flow using 3 pixel wide regions.
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The heart of the problem is that at the peak of the curve, the equations should be
indeterminate. But due to the asymmetry in tlag/ wwe compute the spatial dettive I,
by applying the devetive goerator on either the image before the motion or ,attter
zeros of the numerator (the time detive |;) and the denominator (spatial dettive 1)
do not coincide, so the indetermigadoes not materialize. If instead we use as spatial
dervative the arerage of the spatial demtives before and after the motion then we get
much better results (Fig. 2.4). The impament of the accurgoof the algorithm is aston-
ishing.

2.4.3. emporal Aliasing

So far we hee assumed that the motion is small and does not produce more than
about one pixel optical fl@m Under these circumstances we can assume that the motion is
infinitesimal in practice. But we do notadys have the luxury of so small motion. So we
have b see what is the result of the violation of this assumption amdithcan be dealt
with.

Consider an image with a fine textureelik paid cloth, a brick wall, a pebble beach,
tree foliage etc. All these texturesvlathe property that the same pattern is repeated
although it is not repeated in a strictly periodic senseslsay tha for the sakof exam-
ple that the same pattern is more or less repesaéey ten pixels. If the interframe flois
also around the same value theg Blaw dgorithm that matches intensity patterns of pix-
els or regions, will be confused.

Take for instance the case of a pebble beach where we want to findvthat féo
pixel that corresponds to the center of a particular pebble. If the next frame of the image
sequence has med about 10 pixels so that another pebble occupies the same space, then

Figure 24: If we use a more symmetric spatial derivative the resulting flow is much closer to a
constant than before.
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flow algorithms of the kind that we waso far will match the old pebble with thewe
pebble and return as result arflthat is closer to zero rather than ten.

This problem is not particular to twdimensions but wrks the same way in one
dimension. © e it better consider a smooth ariat has tw peaks (Fig. 2.5) and
moves enough pixls, so that the one hump goes near the place where the other hkamp w
before. It is olious that a simple algorithm that just looks at intensities, will confuse the
two humps and create a false match. Thisé¢ match will appear in this case asvfla
the wrong direction (the part of the iiadhat is ngaive). The finer the detail and the
larger the motion the easiest it is for this problem to arise.

This is another problem that has a quite good solution. The idea is very simple.
Since in practice an optical flothat is less then one pixel is small, then if weehlarge
flow we can shrink the picture to half the original size and apply the algorithm on the
smaller scale where the Was half the original size (Fig. 2.6. Then when we sotve
problem, we can use thisdaesolution solution as a guess to get a head start to the origi-
nal problem.

When we are at the lower resolution, the problem is easier butvmatsateadily
solvable. But since we ka dscovered a lav resolution hammeeverything looks lile a
nail. We can apply the technique recwmy until we go to a ery coarse resolution where
we apply our &varite algorithm.

Figure 25: If the interframe motion is large like the top plot, a single scale algorithm that is based
on intensity matching will confuse one hump with the other. This is apparent in the bot-
tom plot which depicts the flow being negative, which means it points in the opposite di-
rection.
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Figure 26: Before we go to a lower resolution we need to smooth the image to get rid of the fine
detail that will only create aliasing problems. As a result, at some lower resolution the
two humps will look like one and the original flow algorithm will not be confused. The
bottom plot is quite close to the ground truth and is never in the wrong direction.

2.5. OtherTechniques
2.5.1. AffineMotion

2.5.2. Smoothnes€onstraints

The flowv in real image sequences is pwte continuous, which in plain terms
means that the image is a patchnkvof areas where the ¥lois continuous which are sep-
arated by lines of discontinuitAssuming that we areakking wholly within a patch of
the image where the flois continuous we can rewer the flov using the techniques
mentioned abee. But despite our best effort thewitawill look rough and jagged.

There are tw mechanisms that conspire to create this problem. The one is the small
amount of noise in the images, either random noise, discretization noise, motion blur
even violation of the assumptions, thatalys tends to get amplified. The other is that we
do not hae any nechanism to tell our programs to prefer the smoother solution among
more or less equally probable ones. Awiobs, simple and &fctive way to sole both
problems is to use larger regions when we do the matching. This has some unwanted side
effects like tends to werblur a bit but @erall works fine.

We wouldn't introduce a subsection just to say this, would we? This is a solution
that is obvious after reading the yims sections. But it is an excellent opportunity to
introduce a set of mathematical techniques while presenting an altersiion to the
same problem.

We will try to modify Eq. (2.5) in such aay that the result of the minimization will
almost minimize the sum of the squares of Eq. (2.3) but it wilvshqreference for
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smoother solutions. In otheronds we will trade loyalty tewards Eq. (2.3) for some
smoothness. After all Eq. (2.5) is approximate itself.

We wse the same powerful least squares tool again with some modificagoto W
not minimize the sum of squares of Eq. (2.3) aloaieito combination with some other
term that imposes some smoothness on the solution. This solution will minimize the sum
of the old terms and this weterm. But we hee b go ane step further before we can use
this technique.

In Eq. (2.4) we summedver a Sngle ragion only because we matched eadjiae
independentlyAnd our unknowns where only onfor this reason. But mowe atempt
something much more daring.e/fy to impose a property that is not strictly local since
by looking at an isolated pixel we cannot tell if itsafles anooth. W haveto see a f&
of its neighbors too. So instead of solviNgx N small systems with tavunknowns, we
solve a sngle system witi2N x 2N unknovns (whereN x N is the resolution of the
image).

So Eq. (2.4) becomes
Sphys = Z S[iOa JO] =

lo:Jo
R N oo
2 2 Wi, jlddio =i, jo = jlulio, jol + Iylio =1, jo = J]Vlio: jol + Ilio =1, jo = j]O
oo . O O
which represents thghysical constraint, e.g. the set of conditions imposed to the solution

from the problem. Nw, we haveto introduce the priori constraints, e.g. constraints that
we knaw in advance, lile that this particular part of the image is smooth.

In order to use this a priori constraint with the least squares it has xpressed by
a term that is a real function of the imagenflat is dways positve, it is small for smooth
flows and large for rough ones. Clearly there areyn@ices depending on what
exactly we mean by “smooth” and Wwanuch cpu time we are prepared to spefitie
simplest and most intuwite is the sum of squares of the detives of the flav which can
be expressed as

D . . 2 . . 2 . . 2 . . ZD
Ssmooth = 2. [0, Jo] + Uylio, Jol“ + Vlio, Jol“ + Wlio, Jol 03 (2.7)
loJo [] ]

where the subscript denotes the correspondingvatiee. It is obvious that such a
smoothness term satisfies theaboentioned criteria.

The beauty of least squares is that various constraints can be combined by simply
adding them so we ka o minimize

S= Sphys + /\Ssmooth

where is a constant we choose so that the smoothness term has audmatl igligi-
ble effect.
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The next step is to minimiZ& The unknowns here are all thRg,, joJs andvlig, jols
in other words tw unknowvns per pixel. This may sound déikmany but the procedure to
obtain the equations for the minimazation is exactly the saradak&/the dewative d S
with respect to each one of the unknowns k&ep things simple we do each term sepa-
rately The physical term will gie exactly the same results as before, so we do ootyw
about this. The smoothness term is really four distinct terms, but very similar to each
other We will show the dermvation of only one of them and the rest will be simil@ine
next step is to add all far of them (the physical and the four smoothness) andelani
equation that we can solve.

Let's derive the normal equation for one of the four terms

2 UyJio, jol?

loJo

which we will differentiate with respect to one of the unkne which are all thes and
vs, sayu[k, 1]

0 .
which can be transformed to
2u io, i, | 2.8

and nov we haveto take the dewative d u,fig, jo] with respect tau[k,1]. This looks
complicated but it is not.

Admitedly, taking the dewxiative d the denative d a function with respect to the
function sounds confusing. So we go back to the basic definitiomgntw thatu is a
discretized version of the floand that when we tak derivative with respect tox we
actualy comolve u with a templaté. So we e this to get

Ouylig, jol _ 0 i
u[k,l] u[k |] Zb[m]U[lo, JO m] -

5 blm] {7 i Jo -

The dervative d u at one point with respect 1o at a diferent point is almost aiys
zero, because eachis an independent variable. The only case of course that this is equal
to one is when the points are identical. This can be written as

Ufio, jo—m] = o[k —ig]d[jo—m~—1]

0
ufk, 1]
So
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OUyfig, j : . : .
o o0 = 3 plmafkidleljo - m 1) = ek ~clbljo -

Now that we knav this dervative we can substitute it and continue on Eg. (2.8) from
where we stopped

> Ui, jal* = 3 2uylio, joloTk —iglbljo =11

olo lorJo

auk, 17 4

and we can simplify the double summation to simple by eliminagiby making use of
the properties of thé function

jZZUX[io, Jolbljo =]

which is nothing more than a cmbution. There is a catch though. If it was a regular con-
volution then the inde of b would be b[l - j,] and notb[j,—1]. This means that the
derivative emplateb is flipped around zero and since it is an odd template (changes sign
if flipped) we can just change sign. So finaly

> Uyfio, jal” = ~Uxdk, 1]

orJo

d
auk, 17+

This is a beautifull equation that we ded using descrete techniquese\Wbuld also use
continuous techniques and deriexactly the same thing. These continuous techniques
are calledCalculus of Variations.

If we put the whole thing together we cannot write it as a simple majbesgsion
as in Eqg. (2.5), because the equation about tkeifimne pixel depends on the Wfioof
the surrounding pixels. So we write it as

—MUy +Uy) + EqU+ ExV+Ey, =0
—A(Vux +Vyy) + Eq U+ E V+E;; =0

And hav do we ®lve this equation that wolves both theus end vs and their denatives?
Mathematicians call these things differential equations, a dreadful name indegtib
fiably so. Hev do we ®lve them? There are twcases: The continuous, which we cannot
solve, and all we do is guess a solution and trydofy it (mathematicians va @n-
spired to iwvent all kind of nice theories to hide this ugly detail of their trade) and the
descrete which can be reduced to the solution of a huge linear system. Thiswe@kno

to solve. Use a high quality numerical computation library.
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