
Spetsakis Computer Vision

1. Motion Representation

To solve any problem involving motion in 3-D we have to hav ea way to represent
3-D motion. Motion representation is a well understood problem but a non trivial one.
There are many possible representations and each one has advantages and disadvantages.
The troublemaker is rotation. Poor translation has only a couple. But rotation! Rotation
has the Rodrigues parameters, the Euler angles (24 different flavors of them, 12 of which
are really called fixed), quaternions, angle and axis, raw rotation matrices. Before we get
scared, it is not that mathematicians are so much smarter. They just take care of their
image very well. The relation between quaternions and Rodrigues parameters is trivial,
the Rodrigues could be named axis and tangent of half angle, the Euler angles is what a
roboticist would come up with. There are twenty four of them to accommodate all possi-
ble definitions of coordinate systems attached to robotic body parts. And no representa-
tion of rotation is any good if not associated with a rotation matrix. As for disadvantages
each one has its own. The Rodrigues parameters cannot represent rotations of 180
degrees. All Euler angles have two representations (two sets of angles represent the same
rotation) plus they hav esingularities (infinite number of solutions at a few certain points).
Quaternions can represent anything without singularities but involve 4 numbers instead of
three. And a raw rotation matrix is the best in any other respect but it involves 9 numbers.
And only the Rodrigues parameters and the raw matrix can be extended to more than
three dimensions (which is good to know in case you need to give driving directions to
4-dimensional aliens).

To make things slightly more complex the representations of rotation and translation
can be used either directly or embedded in a homogeneous transformation which is just a
4 × 4 matrix. The homogeneous route is used in graphics libraries due to their simplicity:
instead of having to carry a rotation matrix and a translation vector, they carry a4 × 4
matrix only. It is often preferred in robotics and computer vision mostly for the same rea-
sons. The issue of convenience, carried several steps further gav erise to projective geom-
etry. Another mathematical trick to impress the common folk.

Finally, we seem to take for granted that any motion can be represented by a rotation
and a translation. While the assertion is certainly correct and plainly obvious, one has to
prove it. Unfortunately proving that any rigid motion can be represented by a rotation and
a translation is quite hard. Fortunately it offers no intuition and no insight and can be
safely omitted. The opposite, proving that any rotation and translation constitute a rigid
motion is much simpler and offers some useful insight.

1.1. Translation Vector Poor translation vector. It has only one representation really.
Let the translation vector beT

T =





tx

ty

tz






and a pointP

132 Ch. 9.

Computer Vision Spetsakis

P =





px

py

pz






is translated toP′, just by adding vectorT to it

P′ = P + T.

It is not hard to prove that translation is a rigid motion. We only have to prove that the
distance between any pair of of pointsP1 andP2 does not change with motion. So let us
prove that

||P1 − P2|| = ||P′1 − P′2||

where the primed symbols are the points after the motion. Starting from the right hand
side

||P′1 − P′2|| = ||P1 + T − (P2 + T)|| = ||P1 − P2||.

That’s a nice one line proof.

1.2. Rotation Matrix Now the hard part. To make a hard problem slightly easier lets
sojourn to the world of a chicken that did not cross the road all the way. In this 2-D world
we can rotate only around a point (pivot) by some angleθ and unless specified otherwise,
the pivot is the origin of the coordinate system. So a 2-D pointP

Q =




qx

qy





rotates to point

Q′ =




q′x
q′y





and the coordinates of these points are related as follows:

q′x = qxc − qys

q′y = qxs+ qyc

wherec = cos(θ) and s = sin(θ). And if we want to pretend that we are adults and write it
in matrix form





q′x
q′y





= 


c

s

−s

c






qx

qy





Q′ = RQ

where

Ch. 9. Sec. 1. Motion Representation 133

Spetsakis Computer Vision

(1.1)R = 


c

s

−s

c



is the rotation matrix.We might be tempted to derive some properties from this simple
matrix and generalize to three (or more) dimensions. Unfortunately many properties are
specific to the world of flat chicken, so we have to be careful. One property that holds for
all rotation matrices is the value of the determinant

|R| = c2 + s2 = 1.

1.2.1. Rotation and Rotation Matrices

As opposed to translation where we added two vectors, in rotation we multiply the
point vector with the rotation matrix. To explore our new found mathematical structure
further we try to establish that the rotation is a rigid transformation. We return from the
world of flat chicken back to 3-D and try to find if the distance between any pair of points
P1 andP2 does not change with rotation

(1.2)||P1 − P2|| = ||P′1 − P′2||

where the primed symbols are the points after the motion

(1.3)P′i = RPi

Starting from the right hand side of Eq. (1.2) we write

(1.4)
||P′1 − P′2|| = ||RP1 − RP2|| =

(RP1 − RP2)
T(RP1 − RP2) = (P1 − P2)

T RT R(P1 − P2)

If RT R is anything other than the identity matrix1 then we cannot prove Eq. (1.2) forall
vectorsPi . So the only way that (1.3) can represent rigid motion is if

(1.5)RT R = 1

which is a definitive property of rotation matrices. In fact the definition of a rotation
matrix is that it satisfies Eq. (1.5) and has unit determinant. Armed with Eq. (1.5) we can
continue Eq. (1.4)

(P1 − P2)
T(P1 − P2) = ||P1 − P2||

2

1.2.2. Representation The rotation matrix represents a rotation in the most general
form, can be extended to arbitrary (but finite) dimensions, has no singularities of any kind
and is unique (if two rotation matrices represent the same rotation then the two matrices
are equal). But it involves too many numbers and these numbers have no immediate phys-
ical meaning. The redundancy will give us trouble if we try to estimate them and the lack
of direct physical interpretation will limit the connection to the underlying physical prob-
lem.

134 Ch. 9. Sec. 1. Motion Representation

Computer Vision Spetsakis

1.2.2.1. Fixed Angles

We hav ealready seen the 2-D rotation in Eq. (1.1) and does not look too bad. It
involves one parameter only, the angle of rotation, and the pivot of the rotation is by con-
vention the origin. The matrix is only2 × 2 and of very simple form. How about extend-
ing it to three dimensions. We all know that orientation in 3-D involves three motions:
pan (left and right), tilt (up and down) and roll (what is left), or if you are a sailor roll,
pitch and yaw. These correspond to rotations around theX, Y and Z axes. So forget all
you learned in your math courses, head for the port and ask an old salt. Any sailor that
has survived a force nine storm will tell you that the rotation around theX axis is

(1.6)Rx(θ1) =





1

0

0

0

c1

s1

0

−s1

c1






the rotation around theY axis is

(1.7)Ry(θ2) =





c2

0

−s2

0

1

0

s2

0

c2






and therotation around theZ axis is

(1.8)Rz(θ3) =





c3

s3

0

−s3

c3

0

0

0

1






.

Now all we have to do is multiply them together and get

R = Rx(θ1)Ry(θ2)Rz(θ3)

which we can expand and get

R =





c2 c3

s1 s2 c3 + c1 s3

− c1 s2 c3 + s1 s3

− c2 s3

− s1 s2 s3 + c1 c3

c1 s2 s3 + s1 c3

s2

− s1 c2

c1 c2






.

This matrixR certainly does not look friendly. While any Computer Scientist or Engineer
can computeR numerically given the three angles (which keeping with our holy tradi-
tions we call forward kinematics), it does not seem easy to go the inverse way and com-
pute the angles given R. But then we do like attempting the impossible when we know it
is possible.

After staring at the beast for a few minutes we notice thatr13, the upper right ele-
ment is equal tos2, the sine ofθ2. So we can get two solutions forθ2 and we can assume
that c2 is known (it has two possible values so we repeat the procedure twice). Armed
with this we notice that

Ch. 9. Sec. 1. Motion Representation 135

Spetsakis Computer Vision

c3 =
r11

c2

s3 = −
r12

c2

and so we can find a solution forθ3

θ3 = atan2(−
r12

c2
,
r11

c2
).

We can repeat the procedure forθ1

s1 = −
r23

c2

c1 =
r33

c2

and so

θ1 = atan2(−
r23

c2
,
r33

c2
).

We are almost done. What ifs2 = 1 which makesc2 = 0. It will be impossible to divide by
c2 then. The secret in Computer Vision and Robotics (as well as intergalactic travel) is
DO NOT PANIC. The lower left 2 × 2 submatrix ofR has not been used so far. It is not
too late. Ifs2 = 1 then this matrix becomes





s1c3 + c1s3

s1s3 − c1c3

c1c3 − s1s3

s1c3 + c1s3





which can also be written as





s13

−c13

c13

s13





wheres13 = sin(θ1 + θ3) and c13 = cos(θ1 + θ3). While it does not look intimidating it does
not have unique solution. We can compute

θ1 + θ3 = atan2(r21, r2, 2)

but we hav einfinite solutions for each individual angle. In other words a singularity. It
seems that we killed this singularity rather too easily. In practice it is very hard to decide
when a number is zero or one. Since the computers have finite accuracy, a zero might be
represented by a very small number and an one by a number very close to but not exactly
one. To compound our misery, the round-off error might be slightly different on different
computers or with different compilers. The only solution is trial and error.

But before we go to the next chapter, we need to find out why is this representation
calledFixed Angles. It does not seem likely that they were introduced by a guy named
Joe Fixed, or these angles can be viewed as neutered. To see why, let us go back to the
definition ofR

136 Ch. 9. Sec. 1. Motion Representation

Computer Vision Spetsakis

R = Rx(θ1)Ry(θ2)Rz(θ3)

and observe that rotation matrices mean nothing unless we use them to rotate something.
So let 3P be a point in the third coordinate system (we need more than one since we have
three rotations), which initially is coincident with the world frame. Frames 1 and 2 are
also coincident with the world frame. We first rotate frame 3 around theZ axis of frame 2
(same as frame 1 and world frame) and get

2P = Rz(θ3)
3P.

We then rotate frame 2 (with frame 1 rigidly attached to it) around theY axis of frame 1
(same as world frame) and get

1P = Ry(θ2)
2P = Ry(θ2)Rz(θ3)

3P.

And finally we rotate frame 1 around theX axis of the world frame and get
wP = Rx(θ1)

1P = Rx(θ1)Ry(θ2)Rz(θ3)
3P.

It is now clear that the representation is called fixed angles because each time we rotate
around an axis that isfixed to the world coordinate system. If we were modeling the
motion of a robot wrist we would rotate the last joint of the wrist first byθ3 then the sec-
ond last joint byθ2 and finally the first joint of the wrist by an angleθ1. Most books call
this representationFixed AnglesZ − Y − X and the angles are written as(θ3,θ2,θ1). There
are twelve variants of these likeZ − Y − Z, X − Y − Z, X − Y − X, etc.

1.2.2.2. Euler Angles It is easy to rotate around a cardinal axis using the notation in
Eqs. (1.6), (1.7) and (1.8). But if we reverse the order of the operations in the wrist exam-
ple above and rotate the first joint of the wrist first, when we rotate the second joint we
are no longer rotating around the originalY axis but a rotated version of it. And this
sounds like an awfully complex thing to do. But it is not. After you have rotated the three
joints of a wrist it does not matter which one you rotated first. Any backhoe operator can
verify this for you but a mathematician can prove it. So the representation above is also
Euler AnglesX − Y − Z and the angles are written as(θ1,θ2,θ3). There are another 12
variants of these too.

The Euler angles are by far more popular! The reasons are that we can sound more
scientific (very fashionable for almost two centuries now) without doing much, confuse
the uninitiated, and avoid invoking feelings of guilt to typical dog and cat owners.

1.2.2.3. Cayley’s Formula, Rodrigues Parameters, Quaternions and Lie Algebras

All of these are based on the same idea which with successive rumination has given
us all the above concepts. Since they belong to theseen-one-seen-them-allclass of ideas
we treat them together. So we start with Cayley and his ground shaking formulas (there
are two). LetS be

(1.9)S = (R− 1)(R+ 1)−1

Ch. 9. Sec. 1. Motion Representation 137

Spetsakis Computer Vision

whereR is as always a rotation matrix. One can prove that

ST = −S.

S is in other words a skew symmetric matrix. It is fairly easy to do so. First notice that

S = (R− 1)(R+ 1)−1 = R(R+ 1)−1 − (R+ 1)−1

and so

ST = (RT + 1)−1RT − (RT + 1)−1 =

(RT + 1)−1R−1 − (1RT + RRT)−1 =



R(RT + 1)



−1

− 

(1 + R)R−1



−1

=

(1 + R)−1 − R(R+ 1)−1 = −S

and if you are not feeling the ground shaking wait for the second installment of Cayley’s
formula:

(1.10)R = (1 − S)−1(1 + S)

in other words fromS we can get backR. We can easily prove that R is a rotational
matrix if S is a skew symmetric matrix. First we show that it is orthonormal:

RRT = (1 − S)−1(1 + S)(1 + S)T(1 − S)−T =

(1 − S)−1(1 + S)(1 − S)(1 + S)−1 =

(1 − S)−1(1 + S− S− S2)(1 + S)−1 =

(1 − S)−1(1 − S)(1 + S)(1 + S)−1 = 1.

Then we show it is not just orthonormal but a true rotation matrix, it has that is a positive
unity determinant. There are many ways to prove it, bu the one that requires the least
typesetting is the following: Two matrices that have the same eigenvalues have the same
deperminant since the determinant is just the product of the eigenvalues. We will show
that matrices1 − S and1 + S have the same eigenvalues and so the same determinant. Let
λ be an eigenvalue of1 − S. Then

0 = 1 − S− λ1 =



(1 − S− λ1)T


=



1 − ST − λ1


=

1 + S− λ1

Soλ is also an eigenvalue of1 + S, thus1 + S = 1 − S Since

138 Ch. 9. Sec. 1. Motion Representation

Computer Vision Spetsakis

R = 

(1 − S)−1(1 + S)


= 


(1 − S)−1

(1 + S) = 1 + S
1 − S

= 1

and so thisR is indeed a rotation matrix.

The pair of Eq. (1.9) and (1.10) establishes the one to one mapping between skew
symmetric matrices like S and rotation matrices like R. So giv en a3 × 3 rotation matrix
that has 9 elements we can compress it down to a skew symmetric matrix that has only
three (independent) elements. And a4 × 4 rotation matrix can be compressed down to 6
numbers (something to know if your four dimensional relatives from Andromeda invite
themselves and ask for directions to your home). The proof that theR given by Eq. (1.10)
is the same as the one in Eq. (1.9) is straightforward but tedious. You have to substitute
Eq. (1.9) into Eq. (1.10) and massage the expression until you getR. It is a good exercise,
so let us do it.

(1 − S)−1(1 + S) =

(1 − (R− 1)(R+ 1)−1)−1(1 + (R− 1)(R+ 1)−1) =

+ 1)(R+ 1)−1 − (R− 1)(R+ 1)−1


−1


(R+ 1)(R+ 1)−1 + (R− 1)(R+ 1)−1


=



((R+ 1) − (R− 1))(R+ 1)−1



−1


((R+ 1) + (R− 1))(R+ 1)−1


=



21(R+ 1)−1



−1


2R(R+ 1)−1


=

1

2
(R+ 1)2R(R+ 1)−1 = R

since (R+ 1)R = R2 + R = R(R+ 1).

Matrix S being skew symmetric has the form

S =





0

sz

−sy

−sz

0

sx

sy

−sx

0






and the three scalarssx, sy and sz are calledRodrigues parametersand are often
organized in a vectors

s =





sx

sy

sz






which has some nice properties. It is the axis of the rotation, which one can show easily
by proving theRs= s and has length equal to the tangent of the half angle of the rotation
which is slightly harder to show. Unfortunately, when the angle of rotation is 180 degrees,
the half angle is 90 and the tangent is infinite. So the Rodrigues parameters cannot

Ch. 9. Sec. 1. Motion Representation 139

Spetsakis Computer Vision

represent 180 degree rotations.

This little nuisance can be corrected by the use of quaternions. These are four
dimensional relatives of the Rodrigues parameters (not the kind that invite themselves to
dinner) developed by Sir William Rowan Hamilton sometime in the nineteenth century. A
quaternion these days is defined as

q =
1

√ 1 + s2
x + s2

y + s2
z







sx

sy

sz

1







.

The quaternions are unit vectors (at least when used to describe rotation) and can repre-
sent any rotation including rotations by 180 degrees, as long as one does not try to com-
pute them using Rodrigues parameters as intermediate. The quaternions were proposed
partly as a 4 dimensional extension to the complex numbers since this is what was hot
back then. Quaternions are still used in some engineering applications for the several
advantages they provide: they do not involve trigonometric functions, are more compact
than rotation matrices, have no singularities, are numerically stable and very elegant. But
their popularity is nowhere near what Sir Hamilton was hoping when he authored his 800
page strong book “Elements of Quaternions”. They were largely replaced by the much
more convenient vector calculus by the middle of the twentieth century.

Shortly after the development of the quaternionLie Algebraswere in vogue and
Cayley’s formula was once again employed to generalize geometric transformations. Lie
algebras are always rumored to have applications in a field other than your own.

140 Ch. 9. Sec. 1. Motion Representation

Computer Vision Spetsakis

1.3. Homogeneous Coordinates

We should be happy by now. We hav ea way to represent rigid motion that is fairly
simple and intuitive:

(1.11)P′ = RP+ T

So what is this homogeneous coordinates thing? Well, it turns out some people were not
happy and looked for ways to make the simple Eq. (1.11) even simpler. The problem was
the following. The rigid transformation involves two data structures and these are treated
differently: the one is multiplicative the other is additive. And if one wants to apply two
rigid transformations then one would get three terms instead of one. Furthermore, there
are operations that cannot be done by just applying Eq. (1.11), the most useful of which is
projection. But most important, some mathematicians had scribbled down some theory,
calledProjective Geometry, and were looking desperately something to try it out, pretty
much like a hammer looking for a nail. Luckily, very little of this thing survives today,
since every transformation, projection, etc can be done more conveniently with a few
lowly matrices and vectors. All that survives and is useful from this theory can be
explained in about half a lecture hour. So assume as before that

P =





px

py

pz






and

P′ =





p′x
p′y
p′z






are the coordinates of a 3-D point before and after the motion, and

T =







.

0

R

.

0

.

0

.

.

.

.

T

.

1







whereR andT are the rotation and translation as before. It is easy then to verify that

(1.12)P′ = TP

where

P =







px

py

pz

1







Ch. 9. Sec. 1. Motion Representation 141

Spetsakis Computer Vision

and similarly forP′. SymbolsP, P′ andT are called homogeneous vectors and homoge-
neous transformation respectively.

With this simple change of notation we managed to simplify a simple formula. The
gains in simplicity increase dramatically if we change coordinate systems several times.
For instance, if we change rigid motion twice we end up with three terms if we use Eq.
(1.11) but a single term if we use Eq. (1.12).

The interpretation of a homogeneous vector is obvious. Just throw away the last ele-
ment which is unity and what is left is a familiar vector. But what happens if it is not
unity? Although it is unlikely to encounter such a situation with rigid transformations, we
will see that if we use homogeneous coordinates for projection, we will have to deal with
this. But we should not panic. Two homogeneous vectors represent the same thing if the
one is a scaled version of the other (provided that the scale factor is not zero, of course).
So we divide the homogeneous vector by the forth element and bring it in the desired
form.

2. Robot Arm Kinematics

Robotic manipulators can be of many kinds, but we will concentrate on the open
chain variety, that is the arm can be thought of as a series of links joined at joints and
ev ery joint having one degree of freedom, that is one variable parameter controlled by a
motor. Joints come in two flavours. Revolute (a.k.a. rotational), and prismatic (a.k.a. tele-
scopic).

To represent the chain of links in a mathematically tractable fashion we have to
eliminate all details that are not immediately useful. So a joint is just an axis around
which the to links can rotate (or slide) relative to each other and a link just keeps the axes
of its two joints at a fixed relative position (Fig. 2.1).

So we need two numbers to describe linki −1: the lengthai−1 of the common nor-
mal between the two axes and the angleα i−1 (twist) of the two axes relative to each other.
And we need two more to describe jointi : the distancedi between the feet of the com-
mon normals with the previous axisi −1 and the next axisi +1, and the angleθ i of these
two common normals. Eitherθ i or di are variable and controlled by a motor.

Now to do any geometry on the links and joints we have to define coordinate sys-
tems. Every link will have a coordinate system rigidly attached to it. We can put it any-
where we like and of course we like it where it is easier to do the math. After some heavy
thinking, the originators of this idea, decided to put the origin of the coordinate system of
the i −1 link on thei −1 axis, at the foot of the common normal with the next axis. The
Zi−1 axis is in the direction of thei −1 axis and theXi−1 axis is in the direction of the
common normal with the next axis. And the coordinate system of thei link is on thei
axis, at the foot of the common normal with axisi +1, theZi axis is on the axisi and the
Xi axis is on the common normal with thei +1 axis. So the transformation from the coor-
dinate systemi −1 to systemi involves a translation along axisXi−1 axis byai−1, rotation
around the same axis byα i−1, translation alongZi by di and rotation around the same axis
by θ i which can be written as

142 Ch. 9. Sec. 1. Motion Representation

