Spetsakis Computer Vision

1. Motion Representation

To lve any problem irvolving motion in 3-D we hee o havea way to represent
3-D motion. Motion representation is a well understood problatralnon trivial one.
There are manpossible representations and each one has advantages andriegel.
The troublemaker is rotation. Poor translation has only a couple. But rotation! Rotation
has the Rodrigues parameters, the Euler angles (24 diffeneorsftef them, 12 of which
are really called fixed), quaternions, angle and axs rosation matrices. Before we get
scared, it is not that mathematicians are so much smahtey just tale care of their
image \ery well. The relation between quaternions and Rodrigues parametesals tri
the Rodrigues could be named axis and tangent of half angle, the Euler angles is what a
roboticist would come up with. There are twenty four of them to accommodate all possi-
ble definitions of coordinate systems attached to robotic body parts. And no representa-
tion of rotation is ay good if not associated with a rotation matrix. As for disadages
each one has its own. The Rodrigues parameters cannot represent rotations of 180
degrees. All Euler angles fia two representations (twsets of angles represent the same
rotation) plus thg havesingularities (infinite number of solutions at av/feertain points).
Quaternions can representtning without singularities but wolve 4 rumbers instead of
three. And a na rotation matrix is the best in pother respect but it wolves 9 numbers.
And only the Rodrigues parameters and the maatrix can be extended to more than
three dimensions (which is good to knon case you need towg diving directions to
4-dimensional aliens).

To make things slightly more compiethe representations of rotation and translation
can be used either directly or embedded in a homogeneous transformation which is just a
4 x 4 matrix. The homogeneous route is used in graphics libraries due to their simplicity:
instead of having to carry a rotation matrix and a translatemtoy they carry a4 x4
matrix only It is often preferred in robotics and computer vision mostly for the same rea-
sons. The issue of ceenience, carried seral steps furthera@yerise to projectie geom-
etry. Another mathematical trick to impress the common folk.

Finally, we ssem to tak for granted that gnmotion can be represented by a rotation
and a translation. While the assertion is certainly correct and plainly obvious, one has to
prove it. Unfortunately proving that grrigid motion can be represented by a rotation and
a translation is quite hard. Fortunately ifes§ no intuition and no insight and can be
safely omitted. The opposite, proving thay aatation and translation constitute a rigid
motion is much simpler and offers some useful insight.

1.1. Trandation Vector Poor translation ector It has only one representation really
Let the translation vector Be

and a poinP
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is translated té', just by adding vector to it
P=P+T.
It is not hard to pree that translation is a rigid motion. &\nly have o prove that the

distance between wrpair of of pointsP; and P, does not change with motion. So let us
prove that

IPL = Pal| = [P'y = P
where the primed symbols are the points after the motion. Starting from the right hand
side
IP'y = P2l =[Py + T = (P2 + T)|| =[Py = P}

That's a nce one line proof.

1.2. Rotation Matrix Now the hard part. @ make a rard problem slightly easier lets
sojourn to the world of a chiek that did not cross the road all theywn this 2-D world
we can rotate only around a pointvg) by some anglé@ and unless specified otherwise,
the pwot is the origin of the coordinate system. So a 2-D pBint

O
Q= %hx 0
oy O
rotates to point
o
Q= %h,x 0
MAyno
and the coordinates of these points are related as follows:
q'x =(xC— qu

qy =0axS+0qyC

wherec = cos@) and s = sin(@). Andif we want to pretend that we are adults and write it
in matrix form

'O -s O
Eh,XD=EE 0
Myno CHlyn

Q=RQ

where
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- SO
R= s ¢ (1.2)
is the rotation matrix.We mght be tempted to dee sme properties from this simple
matrix and generalize to three (or more) dimensions. Unfortunately pneperties are
specific to the world of flat chicken, so wevba be areful. One property that holds for
all rotation matrices is the value of the determinant

IR|=c?+s” =1.

1.2.1. Rotation and Rotation M atrices

As opposed to translation where we added vectors, in rotation we multiply the
point vector with the rotation matrix.oTexplore our nev found mathematical structure
further we try to establish that the rotation is a rigid transformati@retrn from the
world of flat chiclen back to 3-D and try to find if the distance betwesgnpair of points
P, andP, does not change with rotation

Py = Pl =[Py = Pl (1.2)

where the primed symbols are the points after the motion
P, = RP, (1.3)

Starting from the right hand side of Eq. (1.2) we write
IP's = P'al| = [IRP, = RP,|| =

(RP. - RP)T(RPL ~ RP,) = (P = P,) RTR(P - Py) -4

If R"Ris anything other than the identity mattixhen we cannot pre Hj. (1.2) forall
vectorsP;. So he only way that (1.3) can represent rigid motion is if

RTR=1 (1.5)

which is a definitre poperty of rotation matrices. In fact the definition of a rotation
matrix is that it satisfies Eq. (1.5) and has unit determinant. Armed with Eqg. (1.5) we can
continue Eq. (1.4)

(PL=Po)T (P = Py) =[P, - PP

1.2.2. Representation The rotation matrix represents a rotation in the most general
form, can be extended to arbitrary (but finite) dimensions, has no singularitigskafién
and is unique (if tw rotation matrices represent the same rotation then thenbtrices

are equal). But it molves too may humbers and these numbery&ao immediate pis-

ical meaning. The redundanwill give ws trouble if we try to estimate them and the lack
of direct physical interpretation will limit the connection to the underlying physical prob-
lem.
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1.2.2.1. Fixed Angles

We have already seen the 2-D rotation in Eq. (1.1) and does not look too bad. It
involves one parameter onhe angle of rotation, and thevpi of the rotation is by con-
vention the origin. The matrix is on¥x 2 and of very simple form. He about etend-
ing it to three dimensions. &l know that orientation in 3-D wolves three motions:
pan (left and right), tilt (up and down) and roll (what is left), or if you are a sailor roll,
pitch and ya. These correspond to rotations around Xher and Z axes. So forget all
you learned in your math courses, head for the port and ask an old gatailan that
has surwed a force nine storm will tell you that the rotation around Xhaxis is

ma 0 0[O
Ri@) =D o -sio (1.6)
M s ag
the rotation around theé axis is
0c, 0 s,0
R,/(6,) = E 0 1 0 E (1.7)
s 0 &g
and therotation around th& axis is
[z -s3 0O
R0 =css ¢ Op (1.8)
0 0 1

Now all we hare © do is multiply them together and get
R= Rx(‘gl) Ry(92) Rz(83)

which we can expand and get

O C, C3 —CS3 s U
R:BSlSZCS+Clss ~5 S S3+C, Cy _SLCZE
T C$C+S S CGSS+SC  CC [

This matrixR certainly does not look friendlyVhile ary Computer Scientist or Engineer
can computeR numerically gven the three angles (which keeping with our holy tradi-
tions we call forward kinematics), it does not seem easy to gouesenway and com-
pute the angles ggn R. But then we do lig atempting the impossible when we kmat

is possible.

After staring at the beast for anfeaninutes we notice that;, the upper right ele-
ment is equal t@,, the sine o,. So we @n get tvo solutions forg, and we can assume
that c, is known (it has tw possible alues so we repeat the procedure twice). Armed
with this we notice that
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and so we can find a solution &y

6; = atan2(—

We @an repeat the procedure @r

'3
Co
and so
g T
6, = atan2(- 23 ﬁ)
C G

We ae almost done. What & =1 which malesc, = 0. It will be impossible to divide by
C, then. The secret in Computer Vision and Robotics (as well agaatetic travel) is
DO NOT PANIC. Thelower left2x 2 submatrix of R has not been used sar.flt is not
too late. Ifs, =1 then this matrix becomes

E&%+q% C1C3 — &%g
[ﬁ% C1Cs SIC3+C1S3

which can also be written as

0 0
D_SlS Ci3 =
G3 S

wheres;3 = sin(@, + 63) and ¢;3 = cos@; + 85). While it does not look intimidating it does
not have wique solution. W can compute

6, + 65 = atarn2(r », r, o)

but we haveinfinite solutions for each individual angle. In other words a singuldtity
seems that we killed this singularity rather too eabilyractice it is very hard to decide
when a number is zero or one. Since the computess fimite accurag, a 2ro might be
represented by aevy small number and an one by a number very close to buxanitye
one. © compound our miseryhe round-dferror might be slightly different on dérent
computers or with different compilers. The only solution is trial and error.

But before we go to the rechapterwe reed to find out wiis this representation
called Fixed Angleslit does not seem likely that thevere introduced by a guy named
Joe Fixed, or these angles can be viewed as neuterede Wly, let us go back to the
definition of R
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R= Rx(‘gl) Ry(92) Rz(83)

and obserg that rotation matrices mean nothing unless we use them to rotate something.
So let 3P be a point in the third coordinate system (we need more than one sinceewe ha
three rotations), which initially is coincident with thenrd frame. Frames 1 and 2 are
also coincident with the world frame.e/first rotate frame 3 around t&eaxis of frame 2
(same as frame 1 and world frame) and get

2p = R,(6,) °P.

We then rotate frame 2 (with frame 1 rigidly attached to it) around/'thgis of frame 1
(same as world frame) and get

1P = Ry(HZ) 2P = Ry(ez) RZ(63) BP-
And finally we rotate frame 1 around teaxis of the world frame and get
P = Ry(6y) p= R«(61) Ry(92) R,(65) 3p.

It is now clear that the representation is callecefixangles because each time we rotate
around an axis that ifixedto the world coordinate system. If we were modeling the
motion of a robot wrist we would rotate the last joint of the wrist firs#dhen the sec-
ond last joint byg, and finally the first joint of the wrist by an angle Most books call
this representatioRixed AngleZ —Y — X and the angles are written(@s, 6, 6;). There

are twele variants of these lik& - Y -Z, X-Y-Z, X-Y - X, €tc.

1.2.2.2. Euler Angles It is easy to rotate around a cardinal axis using the notation in
Egs. (1.6), (1.7) and (1.8). But if weveese the order of the operations in the wrisdra-

ple aboe and rotate the first joint of the wrist first, when we rotate the second joint we
are no longer rotating around the origifvalaxis but a rotatedersion of it. And this
sounds lile an avfully complex thing to do. But it is not. After you ka rotated the three
joints of a wrist it does not matter which one you rotated firsy. Batkhoe operator can
verify this for you but a mathematician can peot. So the representation ateois dso
Euler AnglesX -Y —Z and the angles are written @4, 65, 85). There are another 12
variants of these too.

The Euler angles are by far more popular! The reasons are that we can sound more
scientific (very &shionable for almost twecenturies now) without doing much, confuse
the uninitiated, andvaid invoking feelings of guilt to typical dog and cat owners.

1.2.2.3. Cayley’s Formula, Rodrigues Parameters, Quaternionsand Lie Algebras

All of these are based on the same idea which with sugeeasiination has gen
us all the abee mncepts. Since tlyebelong to theseen-one-seen-them-alhss of ideas
we treat them togetheBo we $art with Caylg and his ground shaking formulas (there
are two). LetSbe

S=(R-1)(R+1)* (1.9)
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whereR is as alvays a rotation matrix. One can pmthat
S'=-S.
Sis in other words a glkv ymmetric matrix. It is fairly easy to do so. First notice that
S=(R-1)Y(R+D)=RR+D?T-(R+1D*
and so
gl = (RT +1)—1RT _(RT +1)—1 —
(RT+1)IRT-@AR" +RR)? =

-1 -1
T 0 g -0 _
a?(R +1)D 1+R)R i
1+RI-RR+D)L=-5
and if you are not feeling the ground shakirgjtvior the second installment of Cayke
formula:
R=1-971+9S) (1.10)
in other words fromS we can get baclR. We @an easily pree that R is a rotational
matrix if Sis a skew ymmetric matrix. First we shothat it is orthonormal:
RR =(1-971+9@1+9'1-9) " =
L-91+9(1-91+9*=
1-91+S-S-HA+9 =
1-9%1-91+91+9* =1
Then we shw it is not just orthonormal but a true rotation matrix, it has that is a pesiti
unity determinant. There are nyaways to pree it, bu the one that requires the least
typesetting is the follwing: Two matrices that hae the same eigealues hae the same
deperminant since the determinant is just the product of theveiges. V\& will show

that matriced — Sandl + S have the same eigemalues and so the same determinant. Let
A be an eigevelue of1 - S. Then

O=-S-A1=
_a_ 0=
31 S-a)"H

_ o _ 0=
gl SRR
+S-A1

So is also an eigeralue ofl+ S, thus[1 + SO= 1 - S Since
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— - O_ [ _ o4 _A+sSg_
[RD—Bl S) (1+S)D_Et1 S) aj_us)m_ [Il-—SD_l

and so thisRis indeed a rotation matrix.

The pair of Eq. (1.9) and (1.10) establishes the one to one mapping beteeen sk
symmetric matrices &S and rotation matrices i&kR. So gven a3 x 3 rotation matrix
that has 9 elements we can compresswrdto a skw ymmetric matrix that has only
three (independent) elements. And &4 rotation matrix can be compressed down to 6
numbers (something to kwoif your four dimensional relates from Andromeda wite
themseles and ask for directions to your home). The proof thaRtgeen by K. (1.10)
is the same as the one in Eq. (1.9) is straightiadvibut tedious. You ka to substitute
Eq. (1.9) into Eq. (1.10) and massage the expression until yd ges a good eercise,
so let us do it.

1-971+9 =
A-(R-D(R+DH+(R-YR+DDH =

R+ - (R- 1)(R+1)-1D 3R+1)(R+1)‘1+(R 1)(R+1)‘lD
3(R+1) (R- 1))(R+1)‘1D B(R+1)+(R 1))(R+1)‘1D
40

%1(R+1)‘1D %R(R+1)
§(R+1)2R(R+1)‘1 =R

since R+1)R=R2+ R= R(R+1).
Matrix S being slew ymmetric has the form
00 -s, sy O
S= B s, 0 -s B
oSy S 0

and the three scalars,, s, and s, are calledRodrigues pametersand are often
organized in a vectos

[k
5= T,
[1S;

which has some nice properties. It is the axis of the rotation, which one carasily

by proving theRs= s and has length equal to the tangent of the half angle of the rotation
which is slightly harder to sk Unfortunately when the angle of rotation is 180giees,

the half angle is 90 and the tangent is infinite. So the Rodrigues parameters cannot

OoOodd
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represent 180 degree rotations.

This little nuisance can be corrected by the use of quaternions. These are four
dimensional relaties of the Rodrigues parameters (not the kind that invite themselves to
dinner) deeloped by Sir William Rwan Hamilton sometime in the nineteenth centdyy
guaternion these days is defined as

Bx O

q= ! Eby S
7__53(_4-_55,'-!_- s% Dsz 0

01 0O

The quaternions are uniestors (at least when used to describe rotation) and can repre-
sent ag rotation including rotations by 180 degrees, as long as one does not try to com-
pute them using Rodrigues parameters as intermediate. The quaternions were proposed
partly as a 4 dimensionaktension to the compkenumbers since this is what was hot

back then. Quaternions are still used in some engineering applications fovdted se
adwantages theprovide: the/ do ot involve trigonometric functions, are more compact

than rotation matrices, i@ ro sngularities, are numerically stable and verygafe. But

their popularity is nowhere near what Sir Hamiltoasvihoping when he authored his 800
page strong book “Elements of Quaternions”. yTaere largely replaced by the much

more corenient vector calculus by the middle of the twentieth century.

Shortly after the deelopment of the quaterniohie Algebraswere in vogue and
Cayleys formula was once again employed to generalize geometric transformations. Lie
algebras are ahys rumored to ha gplications in a field other than your own.
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1.3. Homogeneous Coor dinates

We dould be happby now. We havea way to represent rigid motion that @iy
simple and intuitie;

P =RP+T (1.11)

So what is this homogeneous coordinates thing? Well, it turns out some people were not
hapypy and looked for ways to makthe simple Eq. (1.11)ven smpler. The problem \&s

the following. The rigid transformationvalves two data structures and these are treated
differently: the one is multiplicate the other is addie. And if one wants to apply v

rigid transformations then one would get three terms instead of one. Furthermore, there
are operations that cannot be done by just applying Eq. (1.11), the most useful of which is
projection. But most important, some mathematicians had scribbled down some theory
called Projective Geometryand were looking desperately something to try it out, pretty
much like a kammer looking for a nail. Luckilyery little of this thing survies today,

since ®ery transformation, projection, etc can be done moresagoently with a fev

lowly matrices and vectors. All that swes and is useful from this theory can be
explained in about half a lecture houso assume as before that

Op, O

_0On O

P=Pvg

0Pz [

and

Op' O

 _ Oy O

PPy

Pz [

are the coordinates of a 3-D point before and after the motion, and

O - 0
0 R . TU
T=0 0
D- . . . . D
M O .10
whereR andT are the rotation and translation as before. It is easy then to verify that
P=TP (1.12)
where
OPx [
Up,, U
P=0>0
0Pz g

01 0
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and similarly forP'. SymbolsP, P andT are called homogeneous vectors and homoge-
neous transformation respeety.

With this simple change of notation we managed to simplify a simple formula. The
gans in simplicity increase dramatically if we change coordinate systerasakémes.
For instance, if we change rigid motion twice we end up with three terms if we use Eq.
(1.11) but a single term if we use Eg. (1.12).

The interpretation of a homogeneous vector is obvious. Just dway the last ele-
ment which is unity and what is left is a familiagctor But what happens if it is not
unity? Although it is unlikely to encounter such a situation with rigid transformations, we
will see that if we use homogeneous coordinates for projection, we wdlthaeal with
this. But we should not panicwb homogeneousactors represent the same thing if the
one is a scaled version of the other (provided that the scale factor is not zero, of course).
So we dvide the homogeneous vector by the forth element and bring it in the desired
form.

2. Robot Arm Kinematics

Robotic manipulators can be of nyakinds, but we will concentrate on the open
chain \ariety, that is the arm can be thought of as a series of links joined at joints and
eveay joint having one dgree of freedom, that is one variable parameter controlled by a
motor. Joints come in tw flavaurs. R&olute (a.k.a. rotational), and prismatic (a.k.a. tele-
scopic).

To represent the chain of links in a mathematically tractable fashion wee tha
eliminate all details that are not immediately useful. So a joint is just an axis around
which the to links can rotate (or slide) relatio each other and a link just keeps thesix
of its two joints at a fixed relate position (Fig. 2.1).

So we need tow numbers to describe link-1: the lengtha;_; of the common ner
mal between the twaxes and the angler;_; (twist) of the tvwo axes relative  each other
And we need tw more to describe joint the distanced;, between the feet of the com-
mon normals with the previous axis1 and the next axis+1, and the anglé; of these
two common normals. Eithet, or d; are variable and controlled by a motor.

Now to do aiy geometry on the links and joints wevieaio define coordinate sys-
tems. Every link will hge a ©ordinate system rigidly attached to ite\san put it ag-
where we lile and of course we l& it where it is easier to do the math. After someviiea
thinking, the originators of this idea, decided to put the origin of the coordinate system of
thei —1 link on thei —1 axis, at the foot of the common normal with the next axis. The
Zi4 axis is in the direction of the—-1 axis and theX;_; axis is in the direction of the
common normal with the meaxis. And the coordinate system of think is on thei
axis, at the foot of the common normal with axisl, theZ; axis is on the axisand the
X; axis is on the common normal with the1l axis. So the transformation from the coor
dinate systenmn—1 to s/stemi involves a translation along axi§_; axis bya;_;, rotation
around the same axis lay, translation along; by d; and rotation around the same axis
by 6; which can be written as
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