CHAPTER 5

Linear Image Operations

1. Simple Smoothing Filter

Consider the following problem. &\&e given images that are corrupted by random
noise and we are aaff to clean them. The content of the images can be described as pic-
tures with rather smooth variation in grayde This is one of the easiest “restoration”
problems and has one of the simplest solutions. Although things are not so rosy in prac-
tice, it is a good example.

Since the noise is random we will eabdvantage of weraging. It is well known that
if we average say 9 random numbers the result is also a random number but has a stan-
dard deviation that is one third the original. So if we replaegygixel of the image with
the arerage of its3 x 3 neighborhood we will zerage out the random noise to one third of
its original strength but we will not i@ a geat effect on the original image that had
smooth variation anyway.

Congratulations, we designed a really simple filter thartke/ well on images cer
rupted in hegens. But is it the best we can do? Will it work as well on images corrupted
in a less &varable way? Les write down this simple method as a formula and try to get
some insight

Mkold= 53 ¢ ilo-klo-] a.1)
-1<k<1 -1<I1

wherel is the original image ant} is the “restored” image. It is easy to shthat this
expression is linear because it is a simple weighted suraloés of imagéd . Although
there are filters that are non linear there is no general methodology to study them, so most
of our discussion will concentrate on linear filters. Which means that the basic form of
Eqg. (1.1) remains the same and the only things that we can vary are the weight of the
avaaging and the limits of the summation. The weights need not be constarast in f
they can be variables afand j or of ky andl, or all four and the limits can be yhing
we want. Thanks to a French mathematician/engineer/politician that served as officer in
Napoleons amy, we know very well hav to analyze filters with weights that vary with
andl. We wuld do it for weights thatary with kg andl, or all four but with some dif
culty so will avoid it. This engineerby the way was named Jean Batiste Joseph Fourier.

It seems that we ka restricted ourselves quite a bit here by working only on one
particular kind of linear filterThis is partially true because these filtersenaey pre-
dictable behavior and as a result we can tailor them toxauet specifications. Other fil-
ters are much more powerful but we can not predict their exactibeliehey are very
powerful weapons but we do not kmavhich way thg shoot.

Computer Vision Spetsakis

Spetsakis Computer Vision

We @an write EqQ. (1.1) in the most general form we are going to use.

I+ [Ko, lol =%|ZW[k,|]|[ko—k,|o—|] (1.2)

wherew[k, |] is the set of weights for this weightegteage. Thislinear operation is
calledconvolution. The two dmensional data structusg[k, I] is called cowolution tem-
plate or cowolution kernel. Thesimilarity between Eq. (1.2) and the expression for dila-
tion is quite striking.

Apart from this nice coincidence, the formula is not easy to play with. Double sum-
mations with four indices are known to cause headache to laboratory animals and since
we are going to do quite a bit of algebraic manipulation with Eq. (1.2) we can consider
for a while the one dimensional version to demonstrate the most important concepts.
After that, we can switch to the ewdimensional version and discuss thinge ldepara-
bility and circular symmetry which arex@usive © this dimensionality The epression
for the one dimensional case is

I [kol =%W[k]|[ko—k]- (1.3)

1.1. Fourier Analysis

We aould try to apply thisgression on different imagésand templatesv and see what
happens. With a little luck we will notice some pattern, if we choose the proper images
and templates to play with. One very promising such “image” is the exponential image

I[k] = a®
wherea is ary number; real, imaginary or complex. Applying Eqg. (1.3) we get
I [ko] = 5 wik]a"™® =5 wikla®a* = a* S w[k]a™ .
k k k

We @an see that
W(a) = %W[k]c?/'k (1.4)

is a constant because it does not depenk}, ¢ine image index. It depends only on which
exponential we used. So

| [kol =W(a)a'

in other words, thexponential image is scaled! Aremve lucky. Unfortunately the xpo-
nential is the only such function. Mathematicians call functions that can go through an
operation, without anchange other than scaling, eigenfunctionse(idgenvectors that
when multiplied by a matrix get scaled).

The analysis of camlution can become much simpler if we first decompaseye
image into a sum of exponentials and thathere Fourier gets into the picturéf
a = el“ wherej is the imaginary unit we can do the decomposition easily because

82 Ch. 5. Sec. 1. Simple Smoothing Filter

Computer Vision Spetsakis

el¥ = cosw + j sinw (1.5)

and the Fourier analysis decomposeg famction into a sum of sines and cosines. If we
use this compbeversion of sines and cosines an image can be written as

1T =3 cpe™ (1.6)

wherew, = 277/N andN is the size of the image. This equation does not say much before
we knav how to compute thec,,’s. So

C = % % | [K]e™Imaok (1.7)

which is remarkably similar to Eq. (1.6) ancbe more remarkably similar to Eq. (1.4).

Now we havea way to viev the cowolution operation. W decompose an image
into a sum of exponentials, cmive each exponential, which is easand then recon-
struct the result.

While everybody is familiar with with the sines and cosines, the cormetponen-
tial can look kind of scary\ell, it is not. D e this consider the following expression

(cosw + j sinw)X.
It might be a little complicated to attempt to simplify this. But if we replace the sine and
cosine expression with the complkexponential the simplification is obvious:

(cosw + j sinw)® = gej“’g(= ek = coskw + j sinkw.

The scary thing wuld be to do this without using the definition of comeponentials.
So, wheneer we auspect that exponentials are easier than plain sines and cosines, we can
replace eery sine with

. ele—gel?
sinw = | 5
and &ery cosine with
ejw + e_jw
CoSw = —

Notice that both the sine and the cosingehaegaive’ frequencies-w. There are no
such things as getive frequencies in the real world. The ave’ frequencies are just
mathematical artifacts that got life of their own.

Now that we are connced that not all exponentials are equally useful and we can
use the ones defined in Eq. (1.5) to our advantage, we can rewrite Eq. (1.4) to reflect this:

W(el®) = %w[k]ej“’_k = Zwik] ik, (1.8)

Ch. 5. Sec. 1. Simple Smoothing Filter 83

Spetsakis Computer Vision

Admittedly, the differences between (1.7) and (1.8) are mi@drer that thel/N factor
the difference is thab is replaced bynwy. Most textbooks call both formulas Fourier.

2. Pictorial View of Fourier Analysis

There are mandetails in the Fourier analysis that we cannotecan this simple
first approach to thisery deep and fascinating theoWithout expecting to do ggreat
justice to this subject let'see the pictures.

We dill assume one dimensional images which we can thing of as singietaken
from regular images. First question isshdoes a sine or a cosine look like. Yie@nnot
evan be dsplayed because thelternate between posi® and ngaive and displays can-
not shev negdive intensities.

Not all images can be displayed directly as a set of intensities becaysko that
represent such an intensifjne value of a pixel could represemiacities, reflectivity etc.
Or we are in the middle of a series of image transformations and these intermediate
results contain pixels with getive intensities. But no matter what is the reason that we
got n@dive values we might need to display these images. One of the simplest things to
do is to rescale the image to fit between 0 and 255 which is the usual intensity range on a
display To view an image &ery row of which is a sine using MediaMath, we simply do

gshow(gsin(omega * x_img(128,128)), :rescale=t);

and the image is shown in Fig. 2.1.

We @n also create an image of all the sines, one for eaciihere is not much use
for such an image of course other than visualization of the basis images (Fig..2). W
will see later the effect of different filters on each strip of this image.

Fig. 2.1. This is how a sine looks like on a screen. The darkest parts of the image
correspond to intensity equal to -1, the brightest to intensity equal to 1 and the
50% grey to intensity equal to 0.

84 Ch. 5. Sec. 1. Simple Smoothing Filter

Computer Vision Spetsakis

|
".;:;:;:;.,:

Fig. 2.2 Every 16-row strip in this image contains the sinwk, where k is the index
along the horizontal axis. The first row contains the fundamental frequency wy
and the m" row the frequency w = mwy. The range of m is between 0 and 64.

This image shows only 1 to 32.

85

Ch. 5. Sec. 2. Pictorial View of Fourier Analysis

Spetsakis Computer Vision

Pulsetrain,N=1

—elml

Pulsetrain,N=2

] =elml

Fﬁ
o
@
°
@

Pulsetrain,N=3

=elml

H
s
@
°
@

Fig. 2.3 These three plots show the reconstruction of the sawtooth pattern using
one two and three Fourier components.

Now we know how dnes (and cosines) look kkand we cannot blame Laplace for
rejecting Purier's paper They do mot look like they can be used to compose other
images. So let take a ew smple images that are Bty to gve Mr. Fourier a hard time
and plot them. The first “image”, actually awof an image, is a s@tooth pattern (or a
series of ridges). Wan be sure that these nice round sines and cosines cannot reproduce
the sharp corners. But Fig. 2.3 pes us wong. Exen with only the first three compo-
nents the plots look very muchdilsawtooths. In fact the cagrgence is quite fast.

86 Ch. 5. Sec. 2. Pictorial View of Fourier Analysis

Computer Vision Spetsakis

Fig. 2.4 The image on the left shows the a series of strips whose intensity ap-
proximates the sawtooth pattern. The first strip contains one component, so it is
just a sine, the second two etc. The ridges become successively sharper. The im-
age on the right shows the components.

The speed of the coergence can be verifiedxperimentally by displaying a e
images as we did but it can be predicted by looking at dleidf components. Whout
getting into details he this is done le§ look at the MediaMath code that performed the
reconstruction:

for (i=1; i<=num; i++)
{
j = 2 *-1.0;
res += ((-1.0)i/"2) * gsin(omega*j*vec_im),

|3

We @n see that the weight ofeey component is proportional tojﬁwhich coiverges
to zero reasonably quickly.

Corvergence is not that fast for the next example though. vl show the recon-
struction of the square pulse train which is a well known problematic case. No matter
what we do there will alays be a slight ringing; the flat white and flat black regions will
not be exactly flat but slightly rippled. This is known as the Gibbs phenomenon.

In Fig. 2.5 we can see that the eengence is not that fast. After 8 components the
reconstruction is not perfect.

Ch. 5. Sec. 2. Pictorial View of Fourier Analysis 87

Spetsakis Computer Vision

Fig. 2.5 Successive approximations of the square pulse train and its components.
The slightly wavy pattern that is especially noticeable on the bright regions will
not go away completely no matter how many components we use.

for (i=1; i<=num; i++)
{
j = 2 %i-1.0;
res += (1.0/j) * gsin(omega*j*vec_im);

|8

and we knw what to suspect. The jl/is known to cowerge dowly and it is not
summable (the sum ofj1ldoes not corerge).

3. Pictorial View of Filtering

What is the effect of filtering on an image®\@uld tale a eal image and filter it
and see what thefetts are. Unfortunately this willgg us anly the one side of the story
It will be hard to see much di#frence in an image filtered byawifferent lowpass filters
for instance. But the ddérence might become apparent at a later stage of processing. So
let's s2e what is the effect if we apply the filter on an image tile one in Fig. 2.2 which
is a series of sines.

Our first filter is the larpass filter This filter idealy has no effect on thendre-
guencies but completely eliminates the high frequencies. So ifamé tv get rid of all
the high frequenc Fourier components of an image while retaining the fcequency
ones we use this filter (Fig. 3.1). The most common application of this filter is to reduce

88 Ch. 5. Sec. 2. Pictorial View of Fourier Analysis

Computer Vision Spetsakis

N |—e|m1

0.1 —

Fig. 3.1 A practical lowpass filter looks like this. The ideal low pass has infinite
long tails and it is not practical.

the resolution of an image, when for example we want to create thumbnail images. Since
the higher frequeryccomponents cannot be represented well in a lower resolution image
it is better to eliminate them.

Ideally this filter should scale all thewofrequeng components by one (e.g. do
nothing on them) and scale the high freqyeoes by zero (e.g. eliminate them). And
the transition at the cutiofrequeng should be sharp. Idealy this is nice. In practice we
ask for way too much. At best we caxpect a gradual transition and some smaliale
tion from one and zero at the passband and the stopband nespec€tie sharper the
transition and the smaller thewigtion the bigger the template and the more costly the
convolution. Try

Ch. 5. Sec. 3. Pictorial View of Filtering 89

Spetsakis

-

Irlllllllll

Computer Vision

Fig. 3.2 The effect of three different lowpass filters whose transition zones are

1.2, .6 and .3 rad/pixel.

for (i=1; i<=5; i++)

printf("%d0,mk_LP_tmpl(:reduce=3,:sigma=2%*)->vsize);

to see the sizes of various lowpass filters. The mgensve o these filters has a transi-
tion zone about 0.6 rad/mkand requires 61 multiplications per pixel (twice that if the

90

Ch. 5. Sec. 3. Pictorial View of Filtering

Computer Vision

Spetsakis

image is tvo dmensional). Gien thatw has value between zero and 3.14 rad/pixel, this

is not that sharp a transition. In Fig. 3.2 we see the effects of three such filters.

Fig. 3.3 shows the effect of awpass, a highpass and a bandpass filter on our
favorite set of stripes. The highpass filter lets the high frequemmponents untouched

jiill
a
!
i
.

||||I,IIII|I|||IIIII|III|M

i
IIIIIIIIIIIIII
i

Fig. 3.3 The effect of a lowpass, a highpass and a bandpass filter.

Ch. 5. Sec. 3. Pictorial View of Filtering

91

Spetsakis Computer Vision

and eliminates the o frequeng ones. The bandpass lets the middle frequdiiters
untouched and eliminates the rest. Again the problegadiag the width of the transi-
tion zone are the same as thepass filters. In fact the filters are very similar in gnan

ways.

92 Ch. 5. Sec. 3. Pictorial View of Filtering

Computer Vision Spetsakis

3.1.1. 2-D in Separable Directions

4. 2-D Fourier Transform

The Fourier transform can be applied to more thandwmensions although we will
hardly need anything beyond two. The basic intuition is the sansy Eignal can be
decomposed into a sum of sines and cosines which we representv@rience with the
exponential function

ej (UxX+Uyy)_ (4 1)

Although it is tempting to use theawdength of the sinsave & a epresentation, it is
mathematicaly awkward. Eq. (4.1), for example would become

ej(/TXXJr)Tyy)
and it is impossible to represent theerall wavdength as a ector We will use &clus-

sively the frequencies, anduy along the corresponding axes which irygibs are called
wavenumbers. Among their advantages is thay ta be thought of as a vector

Cu, O
u=0 o
My o

and if we use a similar notation ferandy

Fig. 4.1. Any image can be decomposed into a sum of sinusoidals like this of var-
ious wavelengths and orientation.

Ch. 5. Sec. 3. Pictorial View of Filtering 93

Spetsakis Computer Vision

then Eq. (4.1) can be written as

where the dofimeans dot product.

We @n extend the one dimensionarsion of Fourier transform using the a&bo
definition of exponential and get the transform of a funcfi@x)

F(uy uy) = I I f(x, y)e Uy dy dy
—00 —00
which can be rewritten as
o0 I:IOO

i]
f(x, y)e "Wdyrgx

F(uy, uy) = J’e—juxxD
—00 (00] |:|

and we immediately notice that the quantity in the square brackets is the one dimensional
Fourier transform off (x,y) as f x was a onstant. This implies that we can ¢ake

Fourier transform of an image by replacingg column of it with the Fourier transform

of the column and then repeating the sameveryerow. Due to the duality of thedurier
transform we can do the same for theeise transform, e.g. apply it first on the columns
and the on the rows

1 % 01 ° . O
fy) =5~ I e“‘*x@ J' F (uy, uy)e’™Yduy [du,
) ~00 O

o0 ©0

1 .
fuy)= 45 [[Flux uy)el U du, du,,

—00 —00
We @n also write the same dvequations using the vector notation
F(u) = I f (x)e "™ dx

1 o (4.2)
f (X —EIF(u)e du

4.1. Propertiesof 2-D Fourier Transform

Practicaly gerything that is true for the one dimensional version, will be true for the
two dmensions as well. If a functiof(Xx, y), for instance, is periodic with periods
andT, it will have a dscrete Fourier transform

F(uy, uy) = %|Z Fud(uy — KT,)o(uy —1Ty)

94 Ch. 5. Sec. 4. 2-D Fourier Transform

Computer Vision Spetsakis

The same is true for the most important propehy cowolution property If functionr
is the comolution of f andg, r = f(*) g, then the Fourier transform ofis R = F [G. The
definition of comolution is a straightforward extension of the formula for one dimension

o0 00

[F() (X0 Yo) = _[_|' f(X, ¥)9(Xo = X, Yo — y)dx dy (4.3)
—00 —00
which can also be written in vector form

[f(*)gl(*0) = I F()9(xo —x)dx

4.2. Convolution Templates

A large number of image operations arevabutions like snoothing, edge enhance-
ment, dewnatives of any kind, interpolation etc. But ceolutions are also very costly
operations, so in the end ary large percentage of the time spent processing images is
due to cowmolutions and ay small improvement in the performance of omiutions
would have sgnificant effects on theverall performance of a system.

It is almost alvays more cowenient to handle continuous ocmutions when we do
a mathematical analysis of a Vision algorithm but when we implementolidions we
have ro other option than discrete castutions. The definition is straightfoewd transla-
tion of the continuous version. In practice weanéhaveto compute the caolution of
an image with another image, but only between an image and a template to get another
image and sometimes betweemti@mplates in which case we get another template.

An obvious question is whwe havedifferent names for image and templates since
both are tw dmensional data structures. There are ynaasons for that. First ti@, O]
of an image is in the upper left corner whereadj@ of a template can be gwhere.
Second images are normaly things recorded by cameras, scanners etc and eaedbe vie
and understood by humangtliemplates are just collections of numbers and the closest
intuitive parallel is that of a painting brush. But the differences do not stop here. @he tw
are treated differently when we apply various operators on them. Images are considered
periodic in both directions, so an image represents a single tile of an infatlité\ iem-
plate is considered non periodic and it is zero outsidedtenref definition. And usualy
a template is smaller than an image.

Let's look at the case where we golve an mage with a template.oTcorvolve an
imagelij, 0< i < imay 0< | < Jmax With a templatety, Kyin < K < Knax Imin <1< Inaxwe
apply the formula

(1) = 2 Lty -y = % | (m-k),(n-1) L (4.4)
i

While we normaly distinguish between images and templates, the mathematical formulas
do not. Also the formula does not specify what happens at the borders.

Ch. 5. Sec. 4. 2-D Fourier Transform 95

Spetsakis Computer Vision

multiply

multiply

multiply

\ \ etc

~ L7
Original Image

I multiply

—]

\/_,

Ny

e

il
|
\
i/

Destination Image

Fig. 4.2. To compute the value of a pixel of a convolution, we take the template,
flip it, move it to the corresponding pixel on the source image, multiply the corre-
sponding pixels of the image and the template and then compute the sum of the
results.

We @n visualize the cawlution process between an imageand a templatey
easily Usually the template is much smaller (Fig. 4.2). If weniMo compute thealue

96 Ch. 5. Sec. 4. 2-D Fourier Transform

Computer Vision Spetsakis

of pixel i, j of the comolution, we tale the template, flip it (notice that the indiceswgro
to the left and up in the template in Fig. 4.2) and put it oal p@ on the original image
(marked with bold lines in Fig. 4.2) so that g pixel of the template is on top of jgix
i,] of the image. The next step is to multiplesy pixel of the template with the corre-
sponding pixel on the image and assuming our templ&e& &we et 9 such products.
We sum up these nine numbers and the result is daheestored in pid i, | of the result-
ing image.

It is obvious that the cost of such a edation is nine multiplications and 8 addi-
tions per pixel of the image and this can be easily generalized der t@mplates And
exactly the same things happen when wevobwe a emplate with another template.

But we hae sid nothing so far about the borders. What happens when one or more
rows of columns of the template are outside the image as when we calculate the border
pixels of a cowolution? In various image processing libraries there are thewfokp
approaches, none of which is the best f@ryghing.

Trimit

This would result in a smaller image as targeelsithat require source pixels out-

side the original image are not computed. This is fine as long as we do not mind an

image that shrinks aftevery cornvolution. It is at best mathematicaly ina@nient

to add or multiply images of dérent sizes. So this is used mainly for one shot pro-

cessing with small templates.

Zero padding
It assumes that the source image is surrounded by ZEneslooks much betterub
it has problems with mathematical inconsister\e know from mathematics that
we can apply comlutions in aiy order and get the same result, e.g. we can con-
volve an mage with templata first and then with templatie and the result is the
same as caolving with templateb first and then witha. But unless we keep avie
extra pixels outside the orginal image (which means let the imagég gre order of
convolutions is significant at the borders. Zero padding is useg often for image
processing packages that care more about the cosmetics of the image rather than the
mathematical consisteycrhis strategy is also used in MediaMath whenvobiing
two templates, but thex&ra pixels generated are kept. So templates tend t®@ gro
with corvolutions.

Pixel replication
The last pixel on the samewar column is replicated. It is just a better version of
zero padding but suffers from the same mathematical inconsistenc

Image tiling
The image is assumed that it is periodic and that the image at hand is just a single
period. It is perfectly consistent mathematicdyt can create some unwelcome
visual artificts on pictures. If we smooth the picture of a person with a red hat and
the hat reaches up to the top border of the image, we might get aweat dile bot-
tom of the picture along with some complaints about color coordination by some
mathematicaly challengedaghion experts. This strategy is used invohrtion

Ch. 5. Sec. 4. 2-D Fourier Transform 97

Spetsakis Computer Vision

between images and templates in MediaMath.

So the rule for MediaMath is to V& periodic images and non-periodic templates. Note
howerver that MediaMath will generate an error if we explicitely address a pixel outside
its area of definition.

4.3. Separabletemplates

It is obvious that corolutions are gpensve and the cost increases with the size of
the template. But it turns out that most templates that are actualy used belong to a special
class of templates that are callegparable. These are templates thatveahe folloving

property
f(x,y) = fO(x) fO(y) (4.5)

which can be written as
F0%,y) = F90900)) T2

because if we start from the right hand side and apply Eq. (4.3)
Ey 0 CH)
%]f ‘”(X)é(y)%*) o (2)(y)5(X)E%XO1 Yo) = J’I FO(x)a(y) f@yo — ¥)3(x — x)dx dy =

[1909800 = ¥ 12Uy0 - V)aly)dy g =

J' FO(x)3(x0 = X) f @ yp)dx =
f(1)(Xo) f(z)(YO) = (X0 Yo)

Using this identity we can breakyaoonvolution of templatef (x, y) with an imagd in
two

106 9)C) 06 Y) = (%)0 FO9000) 18 FOW)a0

The advantage of such a decomposition becomes obvious when we consider the discrete
version of the templaté “)(x)a(y) which is f&)3;. Recall that the discret# function is

zero @erywhere except foj =0 whered, =1. So if &) is nonzero ol ypin < i < iymex

then the templatef) dj is only (iymax = ivmax +1) X1 and the resulting camlution costs a

lot less. If for example we want a c@tution with a separablé x 7 template, we could

do it with 14 multiplications and 13 additions instead7of 49 nultiplications and 48
additions.

A good example of a separable template is the gaussian

Xt Xy
f(X1y’) =e 202 =@ 202 @ 202

98 Ch. 5. Sec. 4. 2-D Fourier Transform

Computer Vision Spetsakis

Fig. 4.3. A template that has the form f®@(y)a(x), has a discrete equivalent that is
one pixel wide and several pixels long (top) and f®(x)d(y) is one pixel long and
several pixels wide (bottom).

which can be shw, by the way, that it is the only separable function that at the same time
is circularly symmetric.

Ch. 5. Sec. 4. 2-D Fourier Transform 99

