
CHAPTER 5

Linear Image Operations

1. Simple Smoothing Filter

Consider the following problem. We are given images that are corrupted by random
noise and we are asked to clean them. The content of the images can be described as pic-
tures with rather smooth variation in gray level. This is one of the easiest “restoration”
problems and has one of the simplest solutions. Although things are not so rosy in prac-
tice, it is a good example.

Since the noise is random we will take advantage of averaging. It is well known that
if we average say 9 random numbers the result is also a random number but has a stan-
dard deviation that is one third the original. So if we replace every pixel of the image with
the average of its3 × 3 neighborhood we will average out the random noise to one third of
its original strength but we will not have a great effect on the original image that had
smooth variation anyway.

Congratulations, we designed a really simple filter that works well on images cor-
rupted in heavens. But is it the best we can do? Will it work as well on images corrupted
in a less favorable way? Let’s write down this simple method as a formula and try to get
some insight

(1.1)Ir[k0, l0] =
−1≤k≤1
Σ

−1≤l≤1
Σ 1

9
I [k0 − k, l0 − l]

where I is the original image andIr is the “restored” image. It is easy to show that this
expression is linear because it is a simple weighted sum of values of imageI . Although
there are filters that are non linear there is no general methodology to study them, so most
of our discussion will concentrate on linear filters. Which means that the basic form of
Eq. (1.1) remains the same and the only things that we can vary are the weight of the
av eraging and the limits of the summation. The weights need not be constants, in fact
they can be variables ofi and j or of k0 and l0 or all four and the limits can be anything
we want. Thanks to a French mathematician/engineer/politician that served as officer in
Napoleon’s army, we know very well how to analyze filters with weights that vary withk
andl. We could do it for weights that vary with k0 andl0 or all four but with some diffi-
culty so will avoid it. This engineer, by the way, was named Jean Batiste Joseph Fourier.

It seems that we have restricted ourselves quite a bit here by working only on one
particular kind of linear filter. This is partially true because these filters have very pre-
dictable behavior and as a result we can tailor them to our exact specifications. Other fil-
ters are much more powerful but we can not predict their exact behavior. They are very
powerful weapons but we do not know which way they shoot.

Computer Vision Spetsakis

Spetsakis Computer Vision

We can write Eq. (1.1) in the most general form we are going to use.

(1.2)Ir[k0, l0] =
k
Σ

l
Σ w[k, l] I [k0 − k, l0 − l]

where w[k, l] is the set of weights for this weighted average. Thislinear operation is
calledconvolution. The two dimensional data structurew[k, l] is called convolution tem-
plate or convolution kernel. Thesimilarity between Eq. (1.2) and the expression for dila-
tion is quite striking.

Apart from this nice coincidence, the formula is not easy to play with. Double sum-
mations with four indices are known to cause headache to laboratory animals and since
we are going to do quite a bit of algebraic manipulation with Eq. (1.2) we can consider
for a while the one dimensional version to demonstrate the most important concepts.
After that, we can switch to the two dimensional version and discuss things like separa-
bility and circular symmetry which are exclusive to this dimensionality. The expression
for the one dimensional case is

(1.3)Ir[k0] =
k
Σ w[k] I [k0 − k].

1.1. Fourier Analysis

We could try to apply this expression on different imagesI and templatesw and see what
happens. With a little luck we will notice some pattern, if we choose the proper images
and templates to play with. One very promising such “image” is the exponential image

I [k] = α k

whereα is any number; real, imaginary or complex. Applying Eq. (1.3) we get

Ir[k0] =
k
Σ w[k]α k0−k =

k
Σ w[k]α −kα k0 = α k0

k
Σ w[k]α −k.

We can see that

(1.4)W (α) =
k
Σ w[k]α −k

is a constant because it does not depend onk0 the image index. It depends only on which
exponential we used. So

Ir[k0] = W (α)α k0

in other words, the exponential image is scaled! Aren’t we lucky. Unfortunately the expo-
nential is the only such function. Mathematicians call functions that can go through an
operation, without any change other than scaling, eigenfunctions (like eigenvectors that
when multiplied by a matrix get scaled).

The analysis of convolution can become much simpler if we first decompose every
image into a sum of exponentials and that’s where Fourier gets into the picture!If
α = e jω where j is the imaginary unit we can do the decomposition easily because

82 Ch. 5. Sec. 1. Simple Smoothing Filter

Computer Vision Spetsakis

(1.5)e jω = cosω + j sinω

and the Fourier analysis decomposes any function into a sum of sines and cosines. If we
use this complex version of sines and cosines an image can be written as

(1.6)I [k] =
m
Σ cme jmω0k

whereω0 = 2π /N andN is the size of the image. This equation does not say much before
we know how to compute thecm ’s. So

(1.7)cm =
1

N k
Σ I [k]e− jmω0k

which is remarkably similar to Eq. (1.6) and even more remarkably similar to Eq. (1.4).

Now we hav ea way to view the convolution operation. We decompose an image
into a sum of exponentials, convolve each exponential, which is easy, and then recon-
struct the result.

While everybody is familiar with with the sines and cosines, the complex exponen-
tial can look kind of scary. Well, it is not. To see this consider the following expression

(cosω + j sinω)k.

It might be a little complicated to attempt to simplify this. But if we replace the sine and
cosine expression with the complex exponential the simplification is obvious:

(cosω + j sinω)k =

e jω

k

= e jkω = coskω + j sinkω.

The scary thing would be to do this without using the definition of complex exponentials.
So, whenever we suspect that exponentials are easier than plain sines and cosines, we can
replace every sine with

sinω = j
e− jω − e jω

2

and every cosine with

cosω =
e jω + e− jω

2
.

Notice that both the sine and the cosine have “negative” f requencies−ω . There are no
such things as negative frequencies in the real world. The “negative” f requencies are just
mathematical artifacts that got life of their own.

Now that we are convinced that not all exponentials are equally useful and we can
use the ones defined in Eq. (1.5) to our advantage, we can rewrite Eq. (1.4) to reflect this:

(1.8)W (e jω) =
k
Σ w[k]e jω −k =

k
Σ w[k]e− jω k.

Ch. 5. Sec. 1. Simple Smoothing Filter 83

Spetsakis Computer Vision

Admittedly, the differences between (1.7) and (1.8) are minor. Other that the1/N factor
the difference is thatω is replaced bymω0. Most textbooks call both formulas Fourier.

2. Pictorial View of Fourier Analysis

There are many details in the Fourier analysis that we cannot cover in this simple
first approach to this very deep and fascinating theory. Without expecting to do any great
justice to this subject let’s see the pictures.

We still assume one dimensional images which we can thing of as single rows taken
from regular images. First question is how does a sine or a cosine look like. They cannot
ev en be displayed because they alternate between positive and negative and displays can-
not show neg ative intensities.

Not all images can be displayed directly as a set of intensities because they do not
represent such an intensity. The value of a pixel could represent velocities, reflectivity etc.
Or we are in the middle of a series of image transformations and these intermediate
results contain pixels with negative intensities. But no matter what is the reason that we
got negative values we might need to display these images. One of the simplest things to
do is to rescale the image to fit between 0 and 255 which is the usual intensity range on a
display. To view an image every row of which is a sine using MediaMath, we simply do

gshow(gsin(omega * x_img(128,128)), :rescale=t);

and the image is shown in Fig. 2.1.

We can also create an image of all the sines, one for each row. There is not much use
for such an image of course other than visualization of the basis images (Fig. 2.2). We
will see later the effect of different filters on each strip of this image.

Fig. 2.1. This is how a sine looks like on a screen. The darkest parts of the image
correspond to intensity equal to -1, the brightest to intensity equal to 1 and the
50% grey to intensity equal to 0.

84 Ch. 5. Sec. 1. Simple Smoothing Filter

Computer Vision Spetsakis

Fig. 2.2 Ever y 16-row str ip in this image contains the sinω k, where k is the index
along the horizontal axis. The first row contains the fundamental frequency ω0

and the mth row the frequency ω = mω0. The range of m is between 0 and 64.
This image shows only 1 to 32.

Ch. 5. Sec. 2. Pictorial View of Four ier Analysis 85

Spetsakis Computer Vision

elm1

P u l s e t r a i n , N = 1

X

-1 - 0 . 5 0 0 .5 1

Y

- 0 . 5

0

0 .5

elm1

P u l s e t r a i n , N = 2

X

-1 - 0 . 5 0 0 .5 1

Y

-1

0

1

elm1

P u l s e t r a i n , N = 3

X

-1 - 0 . 5 0 0 .5 1

Y

-1

0

1

Fig. 2.3 These three plots show the reconstruction of the sawtooth pattern using
one two and three Four ier components.

Now we know how sines (and cosines) look like and we cannot blame Laplace for
rejecting Fourier’s paper. They do not look like they can be used to compose other
images. So let’s take a few simple images that are likely to give Mr. Fourier a hard time
and plot them. The first “image”, actually a row of an image, is a sawtooth pattern (or a
series of ridges). We can be sure that these nice round sines and cosines cannot reproduce
the sharp corners. But Fig. 2.3 proves us wrong. Even with only the first three compo-
nents the plots look very much like sawtooths. In fact the convergence is quite fast.

86 Ch. 5. Sec. 2. Pictorial View of Four ier Analysis

Computer Vision Spetsakis

Fig. 2.4 The image on the left shows the a series of strips whose intensity ap-
proximates the sawtooth pattern. The first strip contains one component, so it is
just a sine, the second two etc. The ridges become successively sharper. The im-
age on the right shows the components.

The speed of the convergence can be verified experimentally by displaying a few
images as we did but it can be predicted by looking at the Fourier components. Without
getting into details how this is done let’s look at the MediaMath code that performed the
reconstruction:

for (i=1; i<=num; i++)
{

j = 2 *i-1.0;
res += ((-1.0)ˆi/jˆ2) * gsin(omega*j*vec_im);

};

We can see that the weight of every component is proportional to 1/j 2 which converges
to zero reasonably quickly.

Convergence is not that fast for the next example though. We will show the recon-
struction of the square pulse train which is a well known problematic case. No matter
what we do there will always be a slight ringing; the flat white and flat black regions will
not be exactly flat but slightly rippled. This is known as the Gibbs phenomenon.

In Fig. 2.5 we can see that the convergence is not that fast. After 8 components the
reconstruction is not perfect.

Ch. 5. Sec. 2. Pictorial View of Four ier Analysis 87

Spetsakis Computer Vision

Fig. 2.5 Successive approximations of the square pulse train and its components.
The slightly wavy patter n that is especially noticeable on the bright regions will
not go away completely no matter how many components we use.

for (i=1; i<=num; i++)
{

j = 2 *i-1.0;
res += (1.0/j) * gsin(omega*j*vec_im);

};

and we know what to suspect. The 1/j is known to converge slowly and it is not
summable (the sum of 1/j does not converge).

3. Pictorial View of Filtering

What is the effect of filtering on an image? We could take a real image and filter it
and see what the effects are. Unfortunately this will give us only the one side of the story.
It will be hard to see much difference in an image filtered by two different lowpass filters
for instance. But the difference might become apparent at a later stage of processing. So
let’s see what is the effect if we apply the filter on an image like the one in Fig. 2.2 which
is a series of sines.

Our first filter is the lowpass filter. This filter idealy has no effect on the low fre-
quencies but completely eliminates the high frequencies. So if we want to get rid of all
the high frequency Fourier components of an image while retaining the low frequency
ones we use this filter (Fig. 3.1). The most common application of this filter is to reduce

88 Ch. 5. Sec. 2. Pictorial View of Four ier Analysis

Computer Vision Spetsakis

elm1

X

-20 -10 0 10 20

Y

0

0 .1

0 .2

Fig. 3.1 A practical lowpass filter looks like this. The ideal low pass has infinite
long tails and it is not practical.

the resolution of an image, when for example we want to create thumbnail images. Since
the higher frequency components cannot be represented well in a lower resolution image
it is better to eliminate them.

Ideally this filter should scale all the low frequency components by one (e.g. do
nothing on them) and scale the high frequency ones by zero (e.g. eliminate them). And
the transition at the cutoff f requency should be sharp. Idealy this is nice. In practice we
ask for way too much. At best we can expect a gradual transition and some small devia-
tion from one and zero at the passband and the stopband respectively. The sharper the
transition and the smaller the deviation the bigger the template and the more costly the
convolution. Try

Ch. 5. Sec. 3. Pictorial View of Filter ing 89

Spetsakis Computer Vision

Fig. 3.2 The effect of three different lowpass filters whose transition zones are
1.2, .6 and .3 rad/pixel.

for (i=1; i<=5; i++)
printf("%d0,mk_LP_tmpl(:reduce=3,:sigma=2*i)->vsize);

to see the sizes of various lowpass filters. The most expensive of these filters has a transi-
tion zone about 0.6 rad/pixel and requires 61 multiplications per pixel (twice that if the

90 Ch. 5. Sec. 3. Pictorial View of Filter ing

Computer Vision Spetsakis

image is two dimensional). Given thatω has value between zero and 3.14 rad/pixel, this
is not that sharp a transition. In Fig. 3.2 we see the effects of three such filters.

Fig. 3.3 shows the effect of a lowpass, a highpass and a bandpass filter on our
favorite set of stripes. The highpass filter lets the high frequency components untouched

Fig. 3.3 The effect of a lowpass, a highpass and a bandpass filter.

Ch. 5. Sec. 3. Pictorial View of Filter ing 91

Spetsakis Computer Vision

and eliminates the low frequency ones. The bandpass lets the middle frequency filters
untouched and eliminates the rest. Again the problems regarding the width of the transi-
tion zone are the same as the lowpass filters. In fact the filters are very similar in many
ways.

92 Ch. 5. Sec. 3. Pictorial View of Filter ing

Computer Vision Spetsakis

3.1.1. 2-D in Separable Directions

4. 2-D Fourier Transform

The Fourier transform can be applied to more than two dimensions although we will
hardly need anything beyond two. The basic intuition is the same. Every signal can be
decomposed into a sum of sines and cosines which we represent for convenience with the
exponential function

(4.1)e j(ux x+uy y).

Although it is tempting to use the wav elength of the sinewave as a representation, it is
mathematicaly awkward. Eq. (4.1), for example would become

e
j(

2π
λ x

x+
2π
λ y

y)

and it is impossible to represent the overall wav elength as a vector. We will use exclus-
sively the frequenciesux anduy along the corresponding axes which in physics are called
wavenumbers. Among their advantages is that they can be thought of as a vector

u =

ux

uy

and if we use a similar notation forx andy

Fig. 4.1. Any image can be decomposed into a sum of sinusoidals like this of var-
ious wavelengths and orientation.

Ch. 5. Sec. 3. Pictorial View of Filter ing 93

Spetsakis Computer Vision

x =

x

y

then Eq. (4.1) can be written as

eix⋅u

where the dot⋅ means dot product.

We can extend the one dimensional version of Fourier transform using the above
definition of exponential and get the transform of a functionf (x)

F(ux, uy) =
∞

−∞
∫

∞

−∞
∫ f (x, y)e− j(ux x+uy y)dx dy

which can be rewritten as

F(ux, uy) =
∞

−∞
∫ e− jux x

∞

−∞
∫ f (x, y)e− juy y dy

dx

and we immediately notice that the quantity in the square brackets is the one dimensional
Fourier transform off (x, y) as if x was a constant. This implies that we can take the
Fourier transform of an image by replacing every column of it with the Fourier transform
of the column and then repeating the same for every row. Due to the duality of the Fourier
transform we can do the same for the inverse transform, e.g. apply it first on the columns
and the on the rows

f (x, y) =
1

2π

∞

−∞
∫ e jux x

1

2π

∞

−∞
∫ F(ux, uy)e

juy y duy

dux

f (x, y) =
1

4π 2

∞

−∞
∫

∞

−∞
∫ F(ux, uy)e

j(ux x+uy y)dux duy

We can also write the same two equations using the vector notation

(4.2)
F(u) = ∫ f (x)e− ju⋅xdx

f (x) =
1

4π 2 ∫ F(u)e ju⋅xdu

4.1. Properties of 2-D Fourier Transform

Practicaly everything that is true for the one dimensional version, will be true for the
two dimensions as well. If a functionf (x, y), for instance, is periodic with periodsT x

andT y it will have a discrete Fourier transform

F(ux, uy) =
k
Σ

l
Σ Fklδ (ux − kT x)δ (uy − lT y)

94 Ch. 5. Sec. 4. 2-D Four ier Tr ansfor m

Computer Vision Spetsakis

The same is true for the most important property, the convolution property. If f unctionr
is the convolution of f andg, r = f (*)g, then the Fourier transform ofr is R = F ⋅ G. The
definition of convolution is a straightforward extension of the formula for one dimension

(4.3)[f (*)g](x0, y0) =
∞

−∞
∫

∞

−∞
∫ f (x, y)g(x0 − x, y0 − y)dx dy

which can also be written in vector form

[f (*)g](x0) =
∞

−∞
∫ f (x)g(x0 − x)dx

4.2. Convolution Templates

A large number of image operations are convolutions like smoothing, edge enhance-
ment, derivatives of any kind, interpolation etc. But convolutions are also very costly
operations, so in the end a very large percentage of the time spent processing images is
due to convolutions and any small improvement in the performance of convolutions
would have significant effects on the overall performance of a system.

It is almost always more convenient to handle continuous convolutions when we do
a mathematical analysis of a Vision algorithm but when we implement convolutions we
have no other option than discrete convolutions. The definition is straightforward transla-
tion of the continuous version. In practice we never hav eto compute the convolution of
an image with another image, but only between an image and a template to get another
image and sometimes between two templates in which case we get another template.

An obvious question is why we hav edifferent names for image and templates since
both are two dimensional data structures. There are many reasons for that. First the[0, 0]
of an image is in the upper left corner whereas the[0, 0] of a template can be anywhere.
Second images are normaly things recorded by cameras, scanners etc and can be viewed
and understood by humans but templates are just collections of numbers and the closest
intuitive parallel is that of a painting brush. But the differences do not stop here. The two
are treated differently when we apply various operators on them. Images are considered
periodic in both directions, so an image represents a single tile of an infinite wall. A tem-
plate is considered non periodic and it is zero outside its region of definition. And usualy
a template is smaller than an image.

Let’s look at the case where we convolve an image with a template. To convolve an
imageIij , 0 ≤ i ≤ imax, 0 ≤ j ≤ jmax, with a templatetkl , kmin ≤ k ≤ kmax, lmin ≤ l ≤ lmax we
apply the formula

(4.4)[I (*) t]mn =
ij
Σ Iij t(m−i), (n− j) =

kl
Σ I(m−k), (n−l)tkl

While we normaly distinguish between images and templates, the mathematical formulas
do not. Also the formula does not specify what happens at the borders.

Ch. 5. Sec. 4. 2-D Four ier Tr ansfor m 95

Spetsakis Computer Vision

Destination Image

Template

-1,-1

1,1

-1,1 -1,0

0,-10,00,1

1,0 1,-1

Original Image

multiply

multiply

multiply

multiply

etc

add

Fig. 4.2. To compute the value of a pixel of a convolution, we take the template,
flip it, move it to the corresponding pixel on the source image, multiply the corre-
sponding pixels of the image and the template and then compute the sum of the
results.

We can visualize the convolution process between an imageIij and a templatetkl

easily. Usually the template is much smaller (Fig. 4.2). If we want to compute the value

96 Ch. 5. Sec. 4. 2-D Four ier Tr ansfor m

Computer Vision Spetsakis

of pixel i, j of the convolution, we take the template, flip it (notice that the indices grow
to the left and up in the template in Fig. 4.2) and put it on pixel i, j on the original image
(marked with bold lines in Fig. 4.2) so that the0, 0pixel of the template is on top of pixel
i, j of the image. The next step is to multiply every pixel of the template with the corre-
sponding pixel on the image and assuming our template is3 × 3 we get 9 such products.
We sum up these nine numbers and the result is the value stored in pixel i, j of the result-
ing image.

It is obvious that the cost of such a convolution is nine multiplications and 8 addi-
tions per pixel of the image and this can be easily generalized for larger templates.And
exactly the same things happen when we convolve a template with another template.

But we have said nothing so far about the borders. What happens when one or more
rows of columns of the template are outside the image as when we calculate the border
pixels of a convolution? In various image processing libraries there are the following
approaches, none of which is the best for everything.

Trim it
This would result in a smaller image as target pixels that require source pixels out-
side the original image are not computed. This is fine as long as we do not mind an
image that shrinks after every convolution. It is at best mathematicaly inconvenient
to add or multiply images of different sizes. So this is used mainly for one shot pro-
cessing with small templates.

Zero padding
It assumes that the source image is surrounded by zeros.This looks much better but
it has problems with mathematical inconsistency. We know from mathematics that
we can apply convolutions in any order and get the same result, e.g. we can con-
volve an image with templatea first and then with templateb and the result is the
same as convolving with templateb first and then witha. But unless we keep a few
extra pixels outside the orginal image (which means let the image grow) the order of
convolutions is significant at the borders. Zero padding is used very often for image
processing packages that care more about the cosmetics of the image rather than the
mathematical consistency. This strategy is also used in MediaMath when convolving
two templates, but the extra pixels generated are kept. So templates tend to grow
with convolutions.

Pixel replication
The last pixel on the same row or column is replicated. It is just a better version of
zero padding but suffers from the same mathematical inconsistency.

Image tiling
The image is assumed that it is periodic and that the image at hand is just a single
period. It is perfectly consistent mathematicaly. But can create some unwelcome
visual artifacts on pictures. If we smooth the picture of a person with a red hat and
the hat reaches up to the top border of the image, we might get a red glow at the bot-
tom of the picture along with some complaints about color coordination by some
mathematicaly challenged fashion experts. This strategy is used in convolution

Ch. 5. Sec. 4. 2-D Four ier Tr ansfor m 97

Spetsakis Computer Vision

between images and templates in MediaMath.

So the rule for MediaMath is to have periodic images and non-periodic templates. Note
however that MediaMath will generate an error if we explicitely address a pixel outside
its area of definition.

4.3. Separable templates

It is obvious that convolutions are expensive and the cost increases with the size of
the template. But it turns out that most templates that are actualy used belong to a special
class of templates that are calledseparable. These are templates that have the following
property

(4.5)f (x, y) = f (1)(x) f (2)(y)

which can be written as

f (x, y) =

f (1)(x)δ (y)

(*)

f (2)(y)δ (x)

because if we start from the right hand side and apply Eq. (4.3)

f (1)(x)δ (y)

(*)

f (2)(y)δ (x)

(x0, y0) = ∫ ∫ f (1)(x)δ (y) f (2)(y0 − y)δ (x0 − x)dx dy =

∫ f (1)(x)δ (x0 − x)
∫ f (2)(y0 − y)δ (y)dy

dx =

∫ f (1)(x)δ (x0 − x) f (2)(y0)dx =

f (1)(x0) f (2)(y0) = f (x0, y0)

Using this identity we can break any convolution of template f (x, y) with an imageI in
two

I (x, y)(*) f (x, y) =

I (x, y)(*)

f (1)(x)δ (y)

(*)

f (2)(y)δ (x)

The advantage of such a decomposition becomes obvious when we consider the discrete
version of the templatef (1)(x)δ (y) which is f (1)

iδ j . Recall that the discreteδ j function is
zero everywhere except forj = 0 whereδ0 = 1. So if f (1)

i is nonzero forivmin ≤ i ≤ ivmax

then the templatef (1)
iδ j is only(ivmax − ivmax +1) ×1 and the resulting convolution costs a

lot less. If for example we want a convolution with a separable7 × 7 template, we could
do it with 14 multiplications and 13 additions instead of72 = 49 multiplications and 48
additions.

A good example of a separable template is the gaussian

f (x, y,) = e
−

x2+y2

2σ 2 = e
−

x2

2σ 2 e
−

y2

2σ 2

98 Ch. 5. Sec. 4. 2-D Four ier Tr ansfor m

Computer Vision Spetsakis

Fig. 4.3. A template that has the for m f (2)(y)δ (x), has a discrete equivalent that is
one pixel wide and several pixels long (top) and f (1)(x)δ (y) is one pixel long and
several pixels wide (bottom).

which can be show, by the way, that it is the only separable function that at the same time
is circularly symmetric.

Ch. 5. Sec. 4. 2-D Four ier Tr ansfor m 99

