
Spetsakis Computer Vision

9. Kalman Filter
The Kalman Filter theory has an almost cult status and it definitely has a place

among the great scientific discoveries. The blunt formulas that describe the solution to the
filter hide its rather simple basic principles and make it look like magic. And its ease of
application make it feel even more magic. It is usually the last chapter in many Signal
Processing courses and this makes it look like the pinnacle of the area. This, coupled
with the fact that it is usually proved or derived using unnecessarily fancy math, makes it
look like a realy challenging topic. It is not.

In any case the Kalman filter is a great idea and all great ideas are simple. It is
applied whenever we want to compute the state of a system, like the position of a robot.
If, from previous measurements, we know the position of the robot with some uncertainty
and we make a few measurements and infer the position again with some uncertainty, we
can average the two and get a better estimate. This is more or less what the Kalman filter
does, but it does it very robustly. Even if the uncertainty in the measurements is infinite in
one or more dimensions, the filter still works.

Let’s look at that simple example again. A robot knows that its position in the x and
y direction is 5 and 7 with a variance of 1 and 10 respectively. It can also fire its sonars
and get its distance from the walls and find that its x and y position is 3 and 5 with vari-
ance of 10 and 1 respectively. We can compute the estimate of its position using the for-
mulas for the weighted average. The variance-covariance matrix for the position of the
robot is

C1 =




1
0

0
10





and the variance-covariance matrix for the sonar measurement is

C2 =




10
0

0
1




.

and from these we can compute the Cavg and x̂

Cavg = 

C1

−1 + C2
−1



−1

=




0. 91
0

0
0. 91





The best estimate is then

x̂ =




4. 81
5. 18




.

This kind of computation is the heart of the Kalman filter.

Before we can discuss the filter and its magical powers we need some formalism to
make things concrete. The formalism will include two equations. One to describe the
position of the robot motion and the other to describe the behaviour of the sensors. With

42 Ch. 3. Sec. 8. Weighted Average in Multiple Dimensions

Computer Vision Spetsakis

a good such formalism, the only thing we need to describe the robot is to fill in the vari-
ous parameters of the equations, and everything else is taken care by the filter.

To keep the discussion short and general let us define first the state vector of a robot
to be vector of all quantities needed to describe its state. A simple slow robot that roams a
lab might need a state vector that has only three elements: its position x and y and its ori-
entation θ . A space probe on the other hand could have many more: 3 for its position, 3
for its orientation, 3 for its velocity, 3 for its angular velocity, and a number of other
parameters like the weight of its fuel tanks, state of its solar panels etc. It is obvious that
another fitting name for state vector could be generalized position vector. Somehow the
name state won and this is what we will use.

If the robot does not plan to stay in the same state forever, we hav e to have a way to
specify how it changes its state, e.g. how it moves, unfolds its panels, etc. These state
transitions can be dictated by the physics of the problem (if it moves with 100 miles an
hour now, it will cover a certain distance until the next measurement, for example). We
call this physics model plant model or state transition model. The state of a space robot
for example, will change in various ways. The position component of the state will
change according to its velocity and its velocity will change according to the external
gravitational fields, etc.

The state might also change due to commands that it might receive from the human
operator or the controling computer (by shoveling some more trilithium in the burner, or
simply by stepping on the accelarator in the car or turning the steering wheel). We call the
vector of these commands control input and we have to include it in the state transition
equation.

So, it seems, that if we define the state of our robot, the physics of state transitions
and the control input mechanism, we have described the model completely. Unfortunately
it only seems so. In practice there are usualy many things that we did not account for, like
wheel slippage of a lab roaming robot, headwinds for a flying robot, poorly known gravi-
tational field for a moon orbiter etc. The reasons that we do not account for them can be
ignorance of the mathematical models, inability to handle the complexity, stinginess,
lazyness and other typicaly human qualities. In order to protect the public image of sci-
ence and safeguard the trust of the common folks towards science we call all these things
that we do not account for noise. And so we complete our state transition equation by
incorporating some noise in it.

The other half of the story is the measurement model, where we write down an
equation that relates the state of our robot to a set of measurements. Again, for the same
reasons, we have to take into account the presense of noise. It is also very rare that these
measurements will give us an estimate for the whole state vector, which incidentally is
where the Kalman filter is the most useful. This means that we can guess the measure-
ments if we know the state (if there was no noise we should be able to compute the mea-
surements), but usualy we cannot find the state given the measurements even if we hav e
no noise. For example, if we have a lab roaming robot with sonars we can use the mea-
surements to find where the robot is (if we know where the sonar beams are bouncing
off), but in general we cannot use this directly to find the robot orientation directly. So

Ch. 3. Sec. 9. Kalman Filter 43

Spetsakis Computer Vision

stay tuned for the next section to see how the Kalman filter can help.

9.1. State and Measurement Models
A simple and slow robotic train moving on a simple track has a simple 1-D state

vector that is expressed by a real number x which specifies the position on the track. If
the robotic train is controlled in a “stop and go” fashion then the next state is

xk+1 = xk + uk + vk

where the subscript k in the state xk refers to time k and similarly for xk+1. The second
term uk is the so called control input it is simply the distance it was ordered to travel. The
last term is the noise in the system. Usually the only thing we know about the noise is its
mean and variance. Whenever possible we prefer to deal with zero mean noise for con-
venience and this is what we do here. For this simple robot we only need the variance σ v

2

to completely specify the plant model.

A more evolved train that moves fast enough to have some kinetic energy has a
more elaborate state description: a vector

xk =




xk

uk




.

The vector has two elements xk , the position along the track and uk , the speed of the
train. Using some kindergarten physics the next state should be

xk+1 =




xk + ukδ t
uk + Δuk





+ vk

where δ t is the time interval and Δuk is the acceleration at the end of each time interval.
The noise vk is a 2-D vector now with zero mean and variance covariance matrix Cv,k .
We notice that we can write the same equation as

(9.1)
xk+1 =





1
0

δ t
1





xk +




0
1





Δuk + vk =

Φkxk + Γkuk + vk

which not only makes us look more sophisticated but it is more convenient because we
can give meaningful names to the different parts. Matrix Φk is called state transition
matrix and Γk is called control input matrix.

Our robot also has some position sensors that give us some measurements that are
related to the state. In general these measurements are not enough to deduce the state
accurately. But if we know the state of the robot (e.g. its position and speed) and the
physics of the sensor, then we can guess the output of the sensor. In our simple example,
let’s assume that the train is equipped with an odometer that measures distance traveled.
Then the measurement vector zk+1 is 1-D and it relation with the state is

44 Ch. 3. Sec. 9. Kalman Filter

Computer Vision Spetsakis

(9.2)zk+1 = [1 0]xk+1 + wk+1 = Λk+1xk+1 + wk+1.

This relation is nice and simple but it cannot give us the complete state directly. Of course
we might estimate the velocity by taking two measurements at times k and k +1 and sub-
tracting. Not suprisingly, this is what the Kalman filter does essntialy with all the formu-
las that we develop later. Only it does it consistently and optimaly in all the extremely
different situations that it is used.

If in our simple example we assume that the train is equipped with both a speedome-
ter and odometer so that the measurement vector zk+1 is

(9.3)zk+1 =




1
0

0
1




xk+1 + wk+1 = Λk+1xk+1 + wk+1

where Λk+1 is the measurement matrix. In this case the measurement matrix is a very
friendly identity matrix, but we will not always be that lucky. In most cases matrix Λ is
more similar to the one in Eq. (9.2) rather than to Eq. (9.3) so it is not even square not to
mention invertible. This is though when the Kalman filter is most useful. To complete our
model we need to specify the properties of the vector wk+1, the omnipresent noise. It is
usualy assumed zero mean so we only need to specify the variance covariance matrix
Cw,k+1.

9.2. Next State Prediction
Now that we have these two equations, the state transition equation (9.1) and the

measurement equation (9.3), we can try to find some good use for them. We will use the
following scenario. Every time we apply the filter we start from the previous state which
we assume we have computed as accurately as possible and use the equations to compute
the current state again as accurately as we can. And we know from our statistics that
whenever we estimate a quantity we have to estimate the uncertainty of our estimate as
well which usually means we have to estimate the variance covariance matrix.

We do this in two steps. In the first step we use the state transition equation to pre-
dict the current state and its variance covariance matrix without incorporating the mea-
surements and then we incorporate measurements to get the final estimate for the state
along with the variance covariance matrix.

In most cases the best estimate of an actual value underlying a random variable is its
expected value, so

x̂k
k+1 = E{xk+1}

where x̂k
k+1 is the estimate of the state x at time k +1 based on measurements up until time

k. Substituting the state transition equation (9.1) we get

x̂k
k+1 = E{xk+1} = E{Φkxk + Γkuk + vk} =

E{Φkxk} + E{Γkuk} + E{vk}.

Ch. 3. Sec. 9. Kalman Filter 45

Spetsakis Computer Vision

The third of these terms is the expected value of the noise which we have thoughtfully
assumed to be zero. The second term is not even a random variable so its expected value
is itself. And the first term is the product of a constant and a random variable so

(9.4)x̂k
k+1 = Φk E{xk} + Γkuk = Φk x̂k

k + Γkuk

where x̂k
k is the estimate of the state x at time k based on measurements up until time k

which is what we got by applying Kalman filter for the transition from time k −1 to k. We
have to compute now the variance covariance matrix of the state xk+1. Substituting Eq.
(9.1) and Eq. (9.4) in the definition of the variance covariance matrix we get

Pk
k+1 = E







xk+1 − x̂k

k+1





xk+1 − x̂k

k+1



T 



=

E






Φkxk + Γkuk + vk − Φk x̂k

k − Γkuk





Φkxk + Γkuk + vk − Φk x̂k

k − Γkuk



T 



=

E






Φkxk + vk − Φk x̂k

k





Φkxk + vk − Φk x̂k

k



T 



=

E






Φk



xk − x̂k

k



+ vk





Φk



xk − x̂k

k



+ vk



T 


.

The next step is to expand the product inside the expected value and get four terms. Two
of these terms contain both xk and vk which are random variables which we assume inde-
pendent, so the expected value of their product is the product of their expected values

E



Φk(xk − x̂k

k)vk
T 




= E



Φk(xk − x̂k

k)




E



vk

T 



= 0

because the expected value of both factors are zero. The same is true for the other term
that contains both random variables. So we are left with the other two terms

Pk
k+1 = E




Φk(xk − x̂k

k)(Φk(xk − x̂k
k))T 




+ E



vkvk

T 



=

E



Φk(xk − x̂k

k)(xk − x̂k
k)T Φk

T 



+ E



vkvk

T 



=

Φk Pk
kΦT

k + Cv,k

where Pk
k is the variance covariance matrix of xk at time k incorporating measurements

up to time k.

9.3. Incorporating Measurements
It is time now to bring the measurements into the picture before they go stale. The

problem is that this is not at all easy because matrix Λk , the measurement matrix, is not

46 Ch. 3. Sec. 9. Kalman Filter

Computer Vision Spetsakis

always invertible. So what! We will assume it is, convince ourselves that the formulas we
get make sense and then open a real book and verify that the same formulas apply for non
invertible matrices Λk . Now if this does not convince everybody and we need some more
solid proof we can always derive the equations from scratch using χ 2. The math is not
terribly convolved and all the derivations are clean and beautiful. In fact, people that tend
to use the words mathematics and aesthetics in the same sentence, would consider it
poetry.

Assuming that Λk is invertible we can use a few simple facts from statistics. If we
want to combine two equally trustworthy estimates to get a better one we take the aver-
age. You do not need to be a statistician to know that. If the estimates are not equally
trustworthy then we take the weighted average. Again, nothing unexpected here. And this
is true for any dimensions.

In our problem we have an estimate of the state of the robot at time k +1, which we
got from the estimate of the state in time k and a set of measurements. Since we assume
that matrix Λk+1 is invertible we also have an estimate of the position of the robot from
the measurements. We can then take the weighted average of these two estimates and get
a better estimate in exactly the same manner as above but instead of handling matrices
with real numbers, we handle matrices in symbolic form. The only tricky thing is this
assumption about Λk+1, which only means that we have to be careful not to leave any
inverses of Λk+1 in the final equations.

We already know x̂k
k+1 the expected value of the state and Pk

k+1 the variance covari-
ance matrix, which are based on knowledge up until time k. We can compute the state
from the measurements using Eq. (9.3)

xk+1 = Λ−1
k+1(zk+1 − wk+1)

and from this we can easily compute the expected value

x̂k+1 = E{xk+1} = E



Λ−1

k+1(zk+1 − wk+1)




=

Λ−1
k+1zk+1

and the variance covariance matrix

Cx,k+1 = E



(xk+1 − x̂k+1)(xk+1 − x̂k+1)T 




=

E



(Λ−1

k+1(zk+1 − wk+1) − Λ−1
k+1zk+1)(Λ−1

k+1(zk+1 − wk+1) − Λ−1
k+1zk+1)T 




= Λ−1
k+1Cw,k+1Λ−T

k+1.

Now we can compute the expected value and variance covariance matrix using the
weighted average. We start from the variance covariance matrix because it is easier. The
formula for this is

Ch. 3. Sec. 9. Kalman Filter 47

Spetsakis Computer Vision



C1

−1 + C2
−1



−1

which can be more useful if written as

C1(C1 + C2)−1C2.

In our case the two sources of information are the previous state and the measurements so
C1 and C2 are Pk

k+1 and Λ−1
k+1Cw,k+1Λ−T

k+1 respectively. So

Pk+1
k+1 = Pk

k+1


Pk

k+1 + Λ−1
k+1Cw,k+1Λ−T

k+1



−1

Λ−1
k+1Cw,k+1Λ−T

k+1 =

Pk
k+1



Λk+1Pk

k+1 + Cw,k+1Λ−T
k+1




−1

Cw,n+1Λ−T
k+1 =

Pk
k+1ΛT

k+1


Λk+1Pk

k+1ΛT
k+1 + Cw,k+1




−1

Cw,n+1Λ−T
k+1.

If we define the Kalman Gain to be

(9.5)Kk+1 = Pk
k+1ΛT

k+1


Λk+1Pk

k+1ΛT
k+1 + Cw,k+1




−1

we can conclude that

Pk+1
k+1 = Kk+1Cw,k+1Λ−T

k+1.

Are we done already? Well, no. We still have a stubborn Λ−T
k+1 and we do not want it. It

turns out that

(9.6)Kk+1Cw,k+1Λ−T
k+1 = Pk

k+1 − Kk+1Λk+1Pk
k+1

because we can show that their difference is zero

Kk+1Cw,k+1Λ−T
k+1 − Pk

k+1 + Kk+1Λk+1Pk
k+1 = Kk+1



Cw,k+1Λ−T

k+1 + Λk+1Pk
k+1




− Pk
k+1 =

Kk+1


Cw,k+1 + Λk+1Pk

k+1ΛT
k+1




Λ−T
k+1 − Pk

k+1 =

Pk
k+1ΛT

k+1


Λk+1Pk

k+1ΛT
k+1 + Cw,k+1




−1


Cw,k+1 + Λk+1Pk

k+1ΛT
k+1



Λ−T

k+1 − Pk
k+1.

One can notice the matrices that are neighboring their inverses and mutually annihilate
leaving Pk

k+1 − Pk
k+1 = 0. So

Pk+1
k+1 = Pk

k+1 − Kk+1Λk+1Pk
k+1.

And now we are done with the variance covariance. On to x̂k+1
k+1 the estimate of the state.

The formula for this is

48 Ch. 3. Sec. 9. Kalman Filter

Computer Vision Spetsakis



C1

−1 + C2
−1



−1


C1

−1 x1 + C2
−1 x2



.

We notice that the first factor is the variance covariance matrix Pk+1
k+1 we just computed. So

x̂k+1
k+1 = 


Pk

k+1 − Kk+1Λk+1Pk
k+1







(Pk

k+1)−1x̂k
k+1 + 


Λ−1

k+1Cw,k+1Λ−T
k+1




−1

Λ−1
k+1zk+1





=



Pk

k+1 − Kk+1Λk+1Pk
k+1






(Pk

k+1)−1x̂k
k+1 + 


ΛT

k+1C−1
w,k+1Λk+1



Λ−1

k+1zk+1



=



x̂k

k+1 − Kk+1Λk+1x̂k
k+1




+ 

Pk

k+1 − Kk+1Λk+1Pk
k+1






ΛT

k+1C−1
w,k+1Λk+1



Λ−1

k+1zk+1

and if we make use of Eq. (9.6)



x̂k

k+1 − Kk+1Λk+1x̂k
k+1




+ Kk+1Cw,k+1Λ−T
k+1



ΛT

k+1C−1
w,k+1Λk+1



Λ−1

k+1zk+1

and finally

x̂k+1
k+1 = x̂k

k+1 + Kk+1


zk+1 − Λk+1x̂k

k+1



Now our job is complete. Or kind of complete. We still have to prove that these formulas
apply in case Λk+1 is not invertible. One could put together a quick and dirty proof by
using a sequence of invertible matrices Λk+1 that converge to a non invertible matrix. Or
do the whole thing the proper way starting from χ 2. Or prove it in a Bayessian fashion.

9.4. Bayessian Derivation
From the state transition equation

xk+1 = Φkxk + vk

where for convenience we omitted the Γkuk term. Since we know that the distribution of
vk is a zero mean Gaussian with variance Cv,k , the probability density function of xk+1
given xk is

(9.7)p(xk+1 | xk) ∼ N (Φkxk, Cv,k).

The probability density function of xk given all the past measurements is assumed known
from the previous step and is

(9.8)p(xk | z0..k) ∼ N (x̂k
k, Pk

k).

In the first step we want to determine the probability density function of the next state
xk+1 given all the past measurements up to time k which can be done by using marginal-
ization

Ch. 3. Sec. 9. Kalman Filter 49

Spetsakis Computer Vision

p(xk+1 | z0..k) =

∫ p(xk+1, xk | z0..k)dxk =

∫ p(xk+1 | xk, z0..k)p(xk | z0..k)dxk =

and under the Markov assumption, whereby if we have the last state we need no other
information about the past

∫ p(xk+1 | xk)p(xk | z0..k)dxk =

which if we use Eqs. (9.7) and (9.8) and ignore the multiplicative constants becomes

(9.9)∫ e
−

(xk+1−Φkxk)T C−1
v,k(xk+1−Φkxk) + (xk−x̂k

k)T(Pk
k)−1(xk−x̂k

k)
2 dxk .

To avoid carrying around the whole integral we work, for now, on the numerator of the
exponential

(xk+1 − Φkxk)T C−1
v,k(xk+1 − Φkxk) + (xk − x̂k

k)T(Pk
k)−1(xk − x̂k

k) =

xT
k+1C−1

v,kxk+1 − 2xT
k+1C−1

v,kΦkxk + xT
k ΦT

k C−1
v,kΦkxk +

xT
k (Pk

k)−1xk − 2xT
k (Pk

k)−1x̂k
k + (x̂k

k)T(Pk
k)−1x̂k

k =

and after we drop the term that does not contain either xk+1 or xk , we separate the terms
that contain xk and have

xT
k



ΦT

k C−1
v,kΦk + (Pk

k)−1


xk −

2

xT

k+1C−1
v,kΦk + (x̂k

k)T(Pk
k)−1


xk +

xT
k+1C−1

v,k xk+1 =

and if we multiply and divide, and add and subtract the appropriate factors and terms

xT
k



ΦT

k C−1
v,kΦk + (Pk

k)−1


xk −

2

xT

k+1C−1
v,kΦk + (x̂k

k)T(Pk
k)−1




ΦT

k C−1
v,kΦk + (Pk

k)−1


−1


ΦT

k C−1
v,kΦk + (Pk

k)−1

xk +



xT

k+1C−1
v,kΦk + (x̂k

k)T(Pk
k)−1




ΦT

k C−1
v,kΦk + (Pk

k)−1


−1


ΦT

k C−1
v,kxk+1 + (Pk

k)−1x̂k
k



−



xT

k+1C−1
v,kΦk + (x̂k

k)T(Pk
k)−1




ΦT

k C−1
v,kΦk + (Pk

k)−1


−1


ΦT

k C−1
v,kxk+1 + (Pk

k)−1x̂k
k



+

xT
k+1C−1

v,k xk+1 =

50 Ch. 3. Sec. 9. Kalman Filter

Computer Vision Spetsakis

we get the first three terms in a perfect square that contains all the occurrences of xk
which will integrate to a constant (if you still remember the integral in Eq. (9.9)) and both
the perfect square and the integral will disappear leaving us with

− 

xT

k+1C−1
v,kΦk + (x̂k

k)T(Pk
k)−1




ΦT

k C−1
v,kΦk + (Pk

k)−1


−1


ΦT

k C−1
v,kxk+1 + (Pk

k)−1x̂k
k



+

xT
k+1C−1

v,k xk+1 =

xT
k+1C−1

v,k xk+1 − xT
k+1C−1

v,kΦk


ΦT

k C−1
v,kΦk + (Pk

k)−1


−1

ΦT
k C−1

v,kxk+1

− 2xT
k+1C−1

v,kΦk


ΦT

k C−1
v,kΦk + (Pk

k)−1


−1

(Pk
k)−1x̂k

k

− (x̂k
k)T(Pk

k)−1

ΦT

k C−1
v,kΦk + (Pk

k)−1


−1

(Pk
k)−1x̂k

k =

and after combining the first two terms we get

(9.10)

xT
k+1




C−1

v,k − C−1
v,kΦk



ΦT

k C−1
v,kΦk + (Pk

k)−1


−1

ΦT
k C−1

v,k





xk+1

− 2xT
k+1C−1

v,kΦk


ΦT

k C−1
v,kΦk + (Pk

k)−1


−1

(Pk
k)−1x̂k

k

− (x̂k
k)T(Pk

k)−1

ΦT

k C−1
v,kΦk + (Pk

k)−1


−1

(Pk
k)−1x̂k

k .

If we now apply the Sherman-Morrison-Woodbury identity on the first term we get

C−1
v,k − C−1

v,kΦk


ΦT

k C−1
v,kΦk + (Pk

k)−1


−1

ΦT
k C−1

v,k = 

Cv,k + Φk Pk

kΦT
k




−1

and so Eq. (9.10) becomes

xT
k+1



Cv,k + Φk Pk

kΦT
k




−1

xk+1

− 2xT
k+1C−1

v,kΦk


ΦT

k C−1
v,kΦk + (Pk

k)−1


−1

(Pk
k)−1x̂k

k

− (x̂k
k)T(Pk

k)−1

ΦT

k C−1
v,kΦk + (Pk

k)−1


−1

(Pk
k)−1x̂k

k =

and after multiplying and dividing the first term with the appropriate expression and
noticing that the third term is constant with respect to xk+1 we get

Ch. 3. Sec. 9. Kalman Filter 51

Spetsakis Computer Vision

(9.11)
xT

k+1


Cv,k + Φk Pk

kΦT
k




−1

xk+1 −

2xT
k+1



Cv,k + Φk Pk

kΦT
k




−1


Cv,k + Φk Pk

kΦT
k




C−1
v,kΦk



ΦT

k C−1
v,kΦk + (Pk

k)−1


−1

(Pk
k)−1x̂k

k + const .

We notice that



Cv,k + Φk Pk

kΦT
k




C−1
v,kΦk



ΦT

k C−1
v,kΦk + (Pk

k)−1


−1

(Pk
k)−1 =



Φk + Φk Pk

kΦT
k C−1

v,kΦk





Pk

kΦT
k C−1

v,kΦk + 1


−1

=

Φk


1 + Pk

kΦT
k C−1

v,kΦk





Pk

kΦT
k C−1

v,kΦk + 1


−1

= Φk

so Eq. (9.11) becomes

xT
k+1



Cv,k + Φk Pk

kΦT
k




−1

xk+1 −

2xT
k+1



Cv,k + Φk Pk

kΦT
k




−1

Φk x̂k
k + const =

(xT
k+1 − Φk x̂k

k)T 

Cv,k + Φk Pk

kΦT
k




−1

(xT
k+1 − Φk x̂k

k) + const′ =

(xT
k+1 − Φk x̂k

k)T Pk
k+1

−1
(xT

k+1 − Φk x̂k
k) + const′

where

Pk
k+1 = Cv,k + Φk Pk

kΦT
k

and Φk x̂k
k would be Φk x̂k

k + Γkuk if we hd not dropped Γkuk for convenience. This means
that xk+1, giv en the measurements up until time k has mean

x̂k
k+1 = Φk x̂k

k + Γkuk

and variance

Pk
k+1 = Cv,k + Φk Pk

kΦT
k .

So after a couple of pages of mathematical scribbling we showed that the Bayessian
approach gives us the right result.

Off to derive the second step. We want now to find the probability distribution for
the next state given all the previous measurements, and we use the Bayess theorem for
this:

52 Ch. 3. Sec. 9. Kalman Filter

Computer Vision Spetsakis

p(xk+1 | z0..k+1) = p(xk+1 | z0..k, zk+1) =
p(zk+1 | xk+1, z0..k)p(xk+1 | z0..k)

p(zk+1 | z0..k)
.

From the measurement equation

zk+1 = Λk+1xk+1 + wk+1.

we can infer that

p(zk+1 | xk+1, z0..k) = p(zk+1 | xk+1) ∼ N (Λk+1xk+1, Cw,k+1)

and from the first step we know that

p(xk+1 | z0..k) ∼ N (x̂k
k+1, Pk

k+1) .

We do not need to worry about the expression in the denominator because its only pur-
pose in life is to make p(xk+1 | z0..k+1) a proper probability density, that is integrate to
unity. We can achieve the same thing if we omit all the multiplicative constants and in the
end, since we know the end result is a Gaussian the property will be satisfied automati-
cally by virtue of Gaussianity. So omitting unnecessary constants

−2 ln p(xk+1 | z0..k+1) =

(zk+1 − Λk+1xk+1)T Cw,k+1
−1(zk+1 − Λk+1xk+1) + (xk+1 − x̂k

k+1)T Pk
k+1

−1

xk+1 − x̂k

k+1) =

xT
k+1Λk+1

T Cw,k+1
−1Λk+1xk+1 + xT

k+1Pk
k+1

−1xk+1 −

2

xT

k+1Λk+1
T Cw,k+1

−1zk+1 + xT
k+1Pk

k+1
−1x̂k

k+1



+ const =

xT
k+1



Λk+1

T Cw,k+1
−1Λk+1 + Pk

k+1
−1


xk+1 −

2xT
k+1



Λk+1

T Cw,k+1
−1zk+1 + Pk

k+1
−1x̂k

k+1



+ const .

It is obvious that

Pk+1
k+1 = 


Λk+1

T Cw,k+1
−1Λk+1 + Pk

k+1
−1



−1

which is fine for most purposes but we want to arrive to the standard expression, so we
use the Sherman-Morrison-Woodbury identity again and get

Pk+1
k+1 = Pk

k+1 − Pk
k+1Λk+1

T 

Cw,k+1 + Λk+1Pk

k+1Λk+1
T 



−1

Λk+1Pk
k+1 =

Pk
k+1 − Kk+1Λk+1Pk

k+1

where Kk+1 is the Kalman Gain as before and from which we get that

Ch. 3. Sec. 9. Kalman Filter 53

Spetsakis Computer Vision

−2 ln p(xk+1 | z0..k+1) =

xT
k+1



Pk

k+1 − Kk+1Λk+1Pk
k+1




−1

xk+1 −

2xT
k+1



Λk+1

T Cw,k+1
−1zk+1 + Pk

k+1
−1x̂k

k+1



+ const =

and multiplying and dividing by Pk
k+1 − Kk+1Λk+1Pk

k+1 we get

xT
k+1Pk+1

k+1
−1 xk+1 −

2xT
k+1



Pk

k+1 − Kk+1Λk+1Pk
k+1




−1


Pk

k+1 − Kk+1Λk+1Pk
k+1






Λk+1

T Cw,k+1
−1zk+1 + Pk

k+1
−1x̂k

k+1



+ const =



xk+1 − x̂k+1

k+1



T

Pk+1
k+1

−1

xk+1 − x̂k+1

k+1



where

x̂k+1
k+1 = 


Pk

k+1 − Kk+1Λk+1Pk
k+1






Λk+1

T Cw,k+1
−1zk+1 + Pk

k+1
−1x̂k

k+1



.

Again we want the standard expression which we can get by playing a little bit

x̂k+1
k+1 =

Pk
k+1Λk+1

T Cw,k+1
−1zk+1 + x̂k

k+1 − Kk+1Λk+1Pk
k+1Λk+1

T Cw,k+1
−1zk+1 − Kk+1Λk+1x̂k

k+1 =

x̂k
k+1 − Kk+1Λk+1x̂k

k+1 + 

Pk

k+1Λk+1
T Cw,k+1

−1 − Kk+1Λk+1Pk
k+1Λk+1

T Cw,k+1
−1


zk+1

and we notice that if we substitute Kk+1 with its value from Eq. (9.5), the factor multiply-
ing zk+1 can be written as

Pk
k+1Λk+1

T Cw,k+1
−1 − Pk

k+1ΛT
k+1



Λk+1Pk

k+1ΛT
k+1 + Cw,k+1




−1

Λk+1Pk
k+1Λk+1

T Cw,k+1
−1 =

Pk
k+1ΛT

k+1


Λk+1Pk

k+1ΛT
k+1 + Cw,k+1




−1




Λk+1Pk

k+1ΛT
k+1 + Cw,k+1




− Λk+1Pk
k+1ΛT

k+1


Cw,k+1

−1 =

Pk
k+1ΛT

k+1


Λk+1Pk

k+1ΛT
k+1 + Cw,k+1




−1


Cw,k+1



Cw,k+1

−1 =

Pk
k+1ΛT

k+1


Λk+1Pk

k+1ΛT
k+1 + Cw,k+1




−1

= Kk+1

so

54 Ch. 3. Sec. 9. Kalman Filter

Computer Vision Spetsakis

x̂k+1
k+1 = x̂k

k+1 − Kk+1Λk+1x̂k
k+1 + Kk+1zk+1 =

x̂k
k+1 + Kk+1



zk+1 − Λk+1x̂k

k+1



which after shedding so much of the holy blood of the photocopier we rederived the
Kalman equations this time in a Bayessian fashion.

9.5. Algorithm for Kalman Filter
Putting everything together, we start from the state transition equation and measure-

ment equation

xk+1 = Φkxk + Γkuk + vk

and

zk+1 = Λk+1xk+1 + wk+1.

We are given the matrices Φk , Γk and Λk+1 as well as Cv,k and Cw,k+1 the variance covari-
ance matrices of the noise terms. We are also given the starting points x̂0

0 and P0
0. Then at

ev ery time instance k we compute

x̂k
k+1 = Φk x̂k

k + Γkuk

Pk
k+1 = Φk Pk

kΦT
k + Cv,k

Kk+1 = Pk
k+1ΛT

k+1


Λk+1Pk

k+1ΛT
k+1 + Cw,k+1




−1

Pk+1
k+1 = Pk

k+1 − Kk+1Λk+1Pk
k+1

x̂k+1
k+1 = x̂k

k+1 + Kk+1


zk+1 − Λk+1x̂k

k+1



Ch. 3. Sec. 9. Kalman Filter 55

