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Need to Synchronize

● We already saw that if we write on a shared data 
structure w/o synchronization bad things can happen.

● The parts of the code that have this problem are 
called critical sections
– A CS involves

● A shared resource (usually shared memory)
● Two or more processes/threads

● This is a central problem in OS design and parallel 
processing of any kind.



  

Producer-Consumer Problem

● It appears in many situations (pipes most 
notably)

● We play with the producer-consumer because 
we know about it (seen it already)

● We will look at an alternative implementation



  

Atomic operations

● An operation is atomic when it appears to happen 
instantaneously, ie nothing can happen between 
its start and finish.
– Load a single register from the memory is an example 

of an atomic operation (there are some caveats)
– Loading two registers from two places in memory is not 

because between loading the first and loading the 
second, one of the places in the memory may change 
inconsistently

● We have to make a few reasonable assumptions



  

Producer-Consumer

while (true) {
  //produce something
  while (cnt==BUF_SZ)
    ;
  buffer[in] = product;
  in = (in+1)%BUF_SZ;
  cnt++;
}

while (true) {
  while (cnt==0)
    ;
  food = buffer[out];
  out = (out+1)%BUF_SZ;
  cnt--;
  //Consume food;
}



  

Problem...

● We use the whole buffer now (before we could not use 
one cell).

● But when both processes execute cnt++ and cnt --, bad 
things can happen

● Incrementing a variable in the memory is not an atomic 
operation because it involves reading the original value 
into a register, incrementing the register and saving the 
register contents.

● Many things can happen between any pair of these 
operations



  

Recipe for Chaos

  cnt-- is:
    R1 <- cnt
    R1 <- R1-1
    cnt <- R1

Or it happens
Like this:

    R1 <- cnt

    R1 <- R1+1

    cnt <- R1

  cnt++ is:
    R1 <- cnt
    R1 <- R1+1
    cnt <- R1

R1 <- cnt

R1 <- R1-1

cnt <- R1

What if it happens
Like this:
    R1 <- cnt

    R1 <- R1+1

    cnt <- R1 R1 <- cnt

R1 <- R1-1

cnt <- R1



  

The Critical Section Problem

● We now know how to create chaos
● To avoid chaos we have to understand critical 

sections
● Some terminology

– Entry section is the part of the code where we 
prepare for the entry to CS

– Exit section where we clean up before we go
– Remainder section, everything else



  

Critical Section Problem

● To avoid chaos and other unpleasantness we 
have to guarantee
– Mutual exclusion: obvious
– Progress: only processes that do not execute in the 

remainder section can decide and do so in finite time
– Bounded waiting: There exists a bound on the 

number of times other processes are allowed to enter 
the critical section after a process made a request to 
enter and the request is granted.



  

Preemption

● Kernels can be of two kinds:
– Preemptive
– Non-preemptive

● In preemptive ones the CPU can be taken away from the 
running process at any time
– We deal mainly with this case

● In non-preemptive kernels that CPU can be lost only when 
a process in the kernel releases the CPU
– Used only in simpler or very specialized systems
– Or inside older kernels



  

Peterson’s Solution

● A simple solution for two processes only
– A generalization of it is the Bakery Algorithm.

● Assumes that only LOAD and STORE of an 
integer is atomic.

● It uses busy-waiting aka spinlock.



  

Peterson’s Solution

while (true){
  flag[j]=true;
  turn = i;
  while (flag[i]&&turn==i)
    ;
  /*Critical section*/
  flag[j]=false;
}

Process j

while (true){
  flag[i]=true;
  turn = j;
  while (flag[j]&&turn==j)
    ;
  /*Critical section*/
  flag[i]=false;
}

Process i



  

Correctness of Peterson’s solution

● Satisfies Mutual Exclusion
● Satisfies Progress

– If both processes were stuck then 

● Satisfies Bounded-Waiting



  

Problems with Peterson’s solution

● Works only for two processes
– Can be generalized, though

● Does not get any help from the hardware
– Only needs atomic LOAD and STORE.

● Uses spinlock
● Modern computers re-order read and write 

instructions (both compile-time and run-time) as 
long as (local) dependencies are not violated



  

Re-ordering Instructions

x=100;
flag=true;

while (!flag)
  ;
print x;

boolean flag=false;
Int     x=0;



  

Hardware to the rescue

● Hardware designers can create other atomic operations
– test_and_set
– compare_and_swap
– Load-linked and Store-conditional.

● Can be done in various ways
– Disable the interrupts on uniprocessors

● There are not many of them anymore; Even raspberry pi has 4 cores!

– Lock the bus
– Listen to the bus and if a write to the same memory address is 

heard, abort and restart.
● Modern CPUs have load-linked and store-conditional



  

Memory Barriers

● There are two memory models:
– Weakly ordered

● When writes are not immediately visible to other processors

– Strongly ordered
● When writes are immediately visible

– What on earth does this even mean?

● OSes should work with any model
● Most architectures provide instructions that force 

memory writes to propagate
– They are called memory barriers



  

Re-ordering Instructions

x=100;
mem_barrier();
flag=true;while (!flag)

  mem_barrier();
print x;

boolean flag=false;
Int     x=0;



  

Test and Set

while (true){
  while (testandset(&lock))
    ;
  /*Critical section*/
  lock = false;
  /* Remainder Section */
}

boolean testandset(boolean *tgt)
{
  boolean prev = *tgt;

  *tgt = true;
  return prev;
}

/*Initialize*/
lock = false;



  

Test and Set

● Seems to work...
● Kind of...

– Assures mutual exclusion
– Can assure bounded waiting with a bit of extra 

coding
– Can assure progress only if used in a proper 

manner



  

Compare and Swap

boolean compareandswap(boolean *v, boolean exp, boolean new)
{
  boolean prev = *v;
  if (*v == exp)
    *v = new;
  return prev;
}

while (true){
  while (compareandswap(&lock, 0, 1)
    ;
  /* Critical Section */
  lock = 0;
  /* Remainder Section */
}



  

Compare and Swap

● Same deal as with test and set
● The difference is minor



  

How to satisfy Bounded Waiting

● The trick is simple:
– Instead of leaving it the the scheduler to decide who 

runs next and acquires the lock after we release it
– We decide who runs first by passing them the lock 

directly (in a virtual sense)

● We have a couple more variables now...

boolean lock = 0;
boolean waiting[N]={0, 0, ...};



  

Solution with bounded waiting

while (1){
  local key, j;

  waiting[i]=1;
  key=1;
  while (waiting[i]&&key)
    key = test_and_set(&lock);
  waiting[i] = 0;
  /* Critical Section */
  j = (i+1)%N;
  while (j!=i&&~waiting[j])
    j=(j+1)%N;
  if (i==j)
    lock=0;
  else
    waiting[j]=0;
}



  

How it is implemented

● Intel  has cmpxchg which is compare-and-swap
– If executed with bus lock
– Lock guarantees that nothing will happen during the 

execution of  of compare-and-swap

● RISC-V has LL/SC
– Load-linked, store-conditional
– Aka load-reserve
– Here is a version of CaS. 

cas:
  lr.w t0, (a0)
  bne  t0, a1, fail
  sc.w a0, a2, (a0)
  jr   ra
fail:
  li   a0, 1
  jr   ra
(RISC-V manual)



  

Mutex Locks

● The techniques so far were for the system 
programmer.

● An application programmer needs easier to use 
tools.

release(){
  available = true;
}

acquire(){
  while (!available)
    ;
  available = false;
}



  

Mutex Locks

● To use them we acquire the mutex before the 
CS and release it afterwards

while (true){
  acquire();
  /*Critical section*/
  release();
  /*Remainder Section*/
}



  

Some Terminology

● Lock Contention
– Low contention locks: few threads attempt to 

acquire them at the same time
– High Contention Locks. The opposite

● Short Duration Spinlock
– When the expected duration is less than 2 context 

switches
– Makes sense in multicore CPUs.



  

Semaphores

● The real celebrity of synch mechanisms.
● It is an integer (at least in theory)
● Accessed only through two operations

– signal()
– wait()

● Most OSes have an implementation of 
semaphores



  

Semaphores

● There are two kinds
– Counting semaphores

● The most flexible/powerful

– Binary semaphores
● Mutexes, really.

● There is nothing that the one can do and the 
other cannot.



  

Semaphores

wait(S){
  while (S<=0)
    ;
  S--;
}

signal(S){
  S++;
}



  

How to use the Semaphores

while (1)
{
  wait(Smutex);
  /* Critical Section */
  signal(Smutex);
  /* remainder */
}/* P2 */

wait(Scond);
/* Critical Section */

/* P1 */
/* Critical Section */
signal(Scond);

/* Initialize */
Smutex = 1;

/* Initialize */
Scond = 0;
/* This use is uncommon, but
a variant is common */



  

How to Abuse Semaphores

/* Process 1 */
while (true){
  wait(mutex1);
  wait(mutex2);
    /* CS */
  signal(mutex1);
  signal(mutex2);
}

/* Process 2 */
while (true){
  wait(mutex2);
  wait(mutex1);
    /* CS */
  signal(mutex1);
  signal(mutex2);
}



  

Semaphore Implementation

● Semaphores are simple and powerful but still use 
spinlocks (busy waiting)

● Can be implemented so that they avoid long 
spinlocks.

● The spinlock cannot be completely avoided
– It is needed for mutual exclusion within the 

semaphore.
– The CS within the semaphore lasts very little so it is 

unlikely that any process will find this CS occupied.



  

Semaphore Implementation

wait(sem *S){
  S->val--;
  if (S->val<0)
  {
    enqueue(me,&(S->list));
    block();
  }
}

signal(sem *S){
  S->val++;
  if (S->val<=0)
  {
    dequeue(&proc,&(S->list));
    wakeup(proc);
  }
}

typedef struct{
  int val;
  struct proc *list
} sem;



  

Semaphore Implementation

● What could go wrong?
– Assume we have mutex etc...
– Before blocking, the process has to release the 

mutex (o/w nobody will be able to unlock it)
– Between releasing the mutex and blocking, another 

process may execute signal and the wakeup call 
finds nobody sleeping. Meanwhile the process that 
goes to sleep will be sleeping ever-after.



  

Semaphore Implementation

● We have to protect the code with mutexes
● We have to release the mutex and block in one 

go (atomic operation)
● It is hard (even counterproductive) to eliminate 

spinlocks completely since they are used during 
the short period where we check the variables 
and rearrange the queues.



  

Priority inversion

● Consider three processes H, M, and L that have 
high, medium and low priority respectively.

● Process L holds a resource R (usually to update 
something in the kernel)

● Process M becomes ready and, since it has higher 
priority than L, takes the CPU

● Then process H comes and tries to get resource R 
and blocks. Meanwhile process M runs for as long 
as it desires.



  

Priority Inversion

● Solution is priority inheritance.
– The priority of a process is the max of its inherent 

priority and the priority of the resources it holds.
– The priority of a resource is the max of the priorities 

of the processes that wait for it and zero o/w

● In the situation above, process L would run 
temporarily with the same priority as H because 
it holds a resource that H waits for.



  

Monitors

● Semaphores are great, but more suitable for low 
level programming
– Simple, powerful and efficient
– Easy to write great code or poor code
– Concurrent programs are hard to debug, with 

semaphores even harder
– Hard to write modern object oriented code with raw 

semaphores

● Hence monitors



  

What can go wrong with 
Semaphores

● For example:
– This -----------> while (true){

  /* become hungry */
  signal(chair)
  /* get to eat */
  wait(chair);
  /* think */
}



  

What can go wrong with 
Semaphores

● We may have wait and signal in the wrong order, 
or two waits or two signals in a row.

● The compiler cannot detect this
– In many cases a signal has to come before a wait.
– Very often a wait and the corresponding signal are in 

different functions, even different files.
– Most commonly semaphores (or other similar primitive 

objects) are used to provide mutual exclusion or as a 
place for a process to block until a condition is satisfied.



  

Enough Already
What is a Monitor?

● Different languages that use monitors have 
different approaches and interpretations
– Java has provisions for synchronized methods in 

classes, along with condition variables, semaphores 
and mutexes.

– Concurrent Pascal has practically vanilla monitors.
– Pthreads has a bare bones system of mutexes and 

condition variables.



  

Enough Already
What is a Monitor?

● Looks like this:

Monitor

monitor Buffer{
  /* shared variables */
  int saved;
  condition emptyq, fullq;
  ...
  /* methods */
  function put(int item){
  ...
  }
  /* initialization code */
  init_code(){
  ...
  }
}



  

How it works

● Only one process can execute an operation 
inside the monitor

● If a process has to wait for a resource (ie a 
condition to become true) it joins a queue and 
blocks. The queue is (usually) called condition 
variable.

● If a process causes a change in the state of a 
condition, should signal this condition.



  

What is more Powerful?

● Is there anything that one can do with monitors 
that is not possible with semaphores?

● We find the answer in one of two ways
– Solve all the problems using semaphores

● (There are too many problems...)

– Implement monitors using semaphores.

● We, of course, choose the second option.



  

Implement Monitors Using 
Semaphores

Wait Operation

  xcnt++;
  if (next_cnt>0)
    signal(next);
  else
    signal(mutex);
  wait(x_sem);
  xcnt--;

Externally callable methods

  wait(mutex);
  /* Body of method */
  if (next_cnt>0)
    signal(next);
  else
    signal(mutex);

Signal Operation

  if (xcnt>0){
    next_cnt++;
    signal(x_sem);
    wait(next);
    next_cnt--;
  }

Variables
  next: semaphore for processes
         to wait
  next_cnt: number of processes
            signaled but waiting
  mutex: mutex semaphore
  x_sem: semaphore for the x
     condition variable
  xcnt: number of processes
        waiting



  

Bounded Buffer Problem

● The variety of Producer-Consumer problems 
that have fixed buffer size (like we saw in the 
beginning of the chapter)

● Needs three semaphores
– One for mutex
– One to block the consumer if the buffer is empty
– One to block the producer if the buffer is full



  

Bounded Buffer Problem

while (true){
  /* Produce something */
  wait(empty_spot);
  wait(mutex);
    /* place in buffer */
  signal(mutex);
  signal(full_spot);
}

while (true){
  wait(full_spot);
  wait(mutex);
    /* get from buffer */
  signal(mutex);
  signal(empty_spot);
  /* Consume item */
}

#define N 512;

Semaphore mutex = 1;
Semaphore empty_spot = N;
Semaphore full_spot = 0;



  

Readers-Writers

● Assume that there are several processes that 
need to read some data

● There are also processes that update the data
● We can let many readers to read at the same 

time
● But writers have to be alone to avoid 

inconsistent states.



  

Readers Writers

while (true){
  wait(wmutex);
    /* Do updates */
  signal(wmutex);
}

while (true){
  wait(rmutex);
  readcnt++;
  if (readcnt==1)
    wait(wmutex);
  signal(rmutex);
    /* Read... */
  wait(rmutex);
  readcnt--;
  if (readcnt==0)
    signal(wmutex);
  signal(rmutex);
}



  

The Dining Philosophers Problem

● The iconic synchronization problem
● There are N philosophers (make N=5) around a 

table.
● There are also N chopsticks between every two 

neighboring philosophers
● Philosophers are in one of three states: 

thinking, eating, hungry.
● A philosopher needs two chopsticks to eat.



  

Dining Philosophers Problem



  

How to Avoid Deadlock

● There are many different ways to do it:
– Let N-1 philosophers to the table.
– Let even numbered philosophers pick up the left 

chopstick first and odd numbered the right
– Allow philosophers to pick up the chopsticks only 

when both are available.
– Allow philosophers pick up the lower indexed 

chopstick first



  

Naive Solution w/ semaphores

Philosopher i

while (true){
  /* become hungry */
  wait(c[i]);
  wait(c[(i+1)%5]);
  /* get to eat */
  signal(c[(i+1)%5]);
  signal(c[i]);
  /* think */
}



  

Table Restrictions

Philosopher i

while (true){
  /* become hungry */
  wait(chair)
  wait(c[i]);
  wait(c[(i+1)%5]);
  /* get to eat */
  signal(c[(i+1)%5]);
  signal(c[i]);
  signal(chair);
  /* think */
}

  c[i] = 1;
  chair = 4;



  

Odd-Even

Philosopher i

while (true){
  /* become hungry */
  if (even(i)){
    wait(c[i]);
    wait(c[(i+1)%5]);
    } else {
    wait(c[(i+1)%5]);
    wait(c[i]);
  }  
  /* get to eat */
  signal(c[(i+1)%5]);
  signal(c[i]);
  /* think */
}



  

Both or Nothing

Philosopher i

while (true){ /*become hungry*/
  wait(mutex);
  st[i]=HUNGRY; 
  if (st[(i-1)%5]!=EATING &&
      st[(i+1)%5]!=EATING){
    st[i] = EATING;
    signal(mutex);
  } else {
    signal(mutex);
    wait(P[i]);
  }
  /* get to eat */  

Philosopher i (cont.)

  /* get to eat */  
  wait(mutex);
  st[i] = THINKING; /* think */
  if (st[(i-2)%5] != EATING &&
      st[(i-1)%5] == HUNGRY){
    st[(i-1)%5] = EATING;
    signal(P[(i-1)%5]);
  }
  /* same for the right 
     Philosopher */
  signal(mutex);
}



  

Dining Philosophers with Monitors

init_code(){
  for (int i=0; i<5; i++)
    st[i]=THINKING;
}  

monitor DinPhil{
  void pickup(int i){
    st[i] = HUNGRY;
    test(i);
    if (st[i]!=EATING)
      P[i].wait();
  }
  void putdown(int i){
    st[i]=THINKING;
    test((i+4)%5);
    test((i+1)%5);
  }
  void test(int i){
    If ((st[(i+4)%5]!=EATING)&&
        (st[i]==HUNGRY)&&
        (st[(i+1)%5]!=EATING)){
      st[i]=EATING;
      P[i].signal();
  }
}

enum {THINKING, HUNGRY, EATING} st[5];
condition P[i];  



  

Synchronization in Windows

● For things that are of short duration inside the kernel
– Uses interrupt masks on uniprocessors
– Uses spinlocks on multiprocessors
– Avoids preemption while on spinlock

● Outside the kernel uses dispatcher objects
– Mutexes
– Semaphores
– Events (similar to condition variables)
– Timers (wake a process that blocked more than a specified 

time)



  

Synchronization in Windows

● Dispatcher objects can be
– In signaled state
– In non-signaled state.

● Processes blocked on a non-signaled state are 
placed on a queue. And the state of the process 
is waiting.

● When a signal is executed one (or more) 
processes will be woken up.



  

Synchronization on Linux

● For very simple kernel operations Linux provides 
atomic increment, addition, etc for integers.
– These are implemented with the help of hardware (bus 

locking or monitoring)

● For more complex kernel operations Linux has 
mutexes, semaphores, reader-writer locks etc.

● In single processor systems interrupt disabling is used
● In multi processor systems spinlocks are used

– System does not preempt processes that hold locks



  

Pthreads

● The main API for multithreading in Linux.
● Defined by POSIX not by the Linux kernel
● Provides mutex locks, condition variables and read-

write locks
● A wait() on a condition variable requires a mutex as 

a second argument to release atomically before 
blocking.

● Many implementations of Pthreads offer 
semaphores as well.



  

Pthreads vs Monitors

● Both use condition variables.
● Both have a kind of mutex mechanism
● Little else



  

Mutex

● There are different kinds of mutex in Pthreads
– Fast and risky (PTHREAD_MUTEX_NORMAL)
– Slow and safe 

(PTHREAD_MUTEX_ERRORCHECK)
– There are others too



  

Condition Variables

● Condition variables are similar to the condition 
variables in monitors

● When one locks a condition variable, one has to 
provide the mutex.

● When one unlocks a condition variable (signal or 
broadcast) no mutex needs to be provided.

● If a process wakes up from a condition variable, it 
has to compete with other processes to re-acquire 
the mutex.
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