

Operating Systems

Synchronization
Based on Ch. 5 of

OS Concepts by SGG

Need to Synchronize

● We already saw that if we write on a shared data
structure w/o synchronization bad things can happen.

● The parts of the code that have this problem are
called critical sections
– A CS involves

● A shared resource (usually shared memory)
● Two or more processes/threads

● This is a central problem in OS design and parallel
processing of any kind.

Producer-Consumer Problem

● It appears in many situations (pipes most
notably)

● We play with the producer-consumer because
we know about it (seen it already)

● We will look at an alternative implementation

Atomic operations

● An operation is atomic when it appears to happen
instantaneously, ie nothing can happen between
its start and finish.
– Load a single register from the memory is an example

of an atomic operation (there are some caveats)
– Loading two registers from two places in memory is not

because between loading the first and loading the
second, one of the places in the memory may change
inconsistently

● We have to make a few reasonable assumptions

Producer-Consumer

while (true) {
 //produce something
 while (cnt==BUF_SZ)
 ;
 buffer[in] = product;
 in = (in+1)%BUF_SZ;
 cnt++;
}

while (true) {
 while (cnt==0)
 ;
 food = buffer[out];
 out = (out+1)%BUF_SZ;
 cnt--;
 //Consume food;
}

Problem...

● We use the whole buffer now (before we could not use
one cell).

● But when both processes execute cnt++ and cnt --, bad
things can happen

● Incrementing a variable in the memory is not an atomic
operation because it involves reading the original value
into a register, incrementing the register and saving the
register contents.

● Many things can happen between any pair of these
operations

Recipe for Chaos

 cnt-- is:
 R1 <- cnt
 R1 <- R1-1
 cnt <- R1

Or it happens
Like this:

 R1 <- cnt

 R1 <- R1+1

 cnt <- R1

 cnt++ is:
 R1 <- cnt
 R1 <- R1+1
 cnt <- R1

R1 <- cnt

R1 <- R1-1

cnt <- R1

What if it happens
Like this:
 R1 <- cnt

 R1 <- R1+1

 cnt <- R1 R1 <- cnt

R1 <- R1-1

cnt <- R1

The Critical Section Problem

● We now know how to create chaos
● To avoid chaos we have to understand critical

sections
● Some terminology

– Entry section is the part of the code where we
prepare for the entry to CS

– Exit section where we clean up before we go
– Remainder section, everything else

Critical Section Problem

● To avoid chaos and other unpleasantness we
have to guarantee
– Mutual exclusion: obvious
– Progress: only processes that do not execute in the

remainder section can decide and do so in finite time
– Bounded waiting: There exists a bound on the

number of times other processes are allowed to enter
the critical section after a process made a request to
enter and the request is granted.

Preemption

● Kernels can be of two kinds:
– Preemptive
– Non-preemptive

● In preemptive ones the CPU can be taken away from the
running process at any time
– We deal mainly with this case

● In non-preemptive kernels that CPU can be lost only when
a process in the kernel releases the CPU
– Used only in simpler or very specialized systems
– Or inside older kernels

Peterson’s Solution

● A simple solution for two processes only
– A generalization of it is the Bakery Algorithm.

● Assumes that only LOAD and STORE of an
integer is atomic.

● It uses busy-waiting aka spinlock.

Peterson’s Solution

while (true){
 flag[j]=true;
 turn = i;
 while (flag[i]&&turn==i)
 ;
 /*Critical section*/
 flag[j]=false;
}

Process j

while (true){
 flag[i]=true;
 turn = j;
 while (flag[j]&&turn==j)
 ;
 /*Critical section*/
 flag[i]=false;
}

Process i

Correctness of Peterson’s solution

● Satisfies Mutual Exclusion
● Satisfies Progress

– If both processes were stuck then

● Satisfies Bounded-Waiting

Problems with Peterson’s solution

● Works only for two processes
– Can be generalized, though

● Does not get any help from the hardware
– Only needs atomic LOAD and STORE.

● Uses spinlock
● Modern computers re-order read and write

instructions (both compile-time and run-time) as
long as (local) dependencies are not violated

Re-ordering Instructions

x=100;
flag=true;

while (!flag)
 ;
print x;

boolean flag=false;
Int x=0;

Hardware to the rescue

● Hardware designers can create other atomic operations
– test_and_set
– compare_and_swap
– Load-linked and Store-conditional.

● Can be done in various ways
– Disable the interrupts on uniprocessors

● There are not many of them anymore; Even raspberry pi has 4 cores!

– Lock the bus
– Listen to the bus and if a write to the same memory address is

heard, abort and restart.
● Modern CPUs have load-linked and store-conditional

Memory Barriers

● There are two memory models:
– Weakly ordered

● When writes are not immediately visible to other processors

– Strongly ordered
● When writes are immediately visible

– What on earth does this even mean?

● OSes should work with any model
● Most architectures provide instructions that force

memory writes to propagate
– They are called memory barriers

Re-ordering Instructions

x=100;
mem_barrier();
flag=true;while (!flag)

 mem_barrier();
print x;

boolean flag=false;
Int x=0;

Test and Set

while (true){
 while (testandset(&lock))
 ;
 /*Critical section*/
 lock = false;
 /* Remainder Section */
}

boolean testandset(boolean *tgt)
{
 boolean prev = *tgt;

 *tgt = true;
 return prev;
}

/*Initialize*/
lock = false;

Test and Set

● Seems to work...
● Kind of...

– Assures mutual exclusion
– Can assure bounded waiting with a bit of extra

coding
– Can assure progress only if used in a proper

manner

Compare and Swap

boolean compareandswap(boolean *v, boolean exp, boolean new)
{
 boolean prev = *v;
 if (*v == exp)
 *v = new;
 return prev;
}

while (true){
 while (compareandswap(&lock, 0, 1)
 ;
 /* Critical Section */
 lock = 0;
 /* Remainder Section */
}

Compare and Swap

● Same deal as with test and set
● The difference is minor

How to satisfy Bounded Waiting

● The trick is simple:
– Instead of leaving it the the scheduler to decide who

runs next and acquires the lock after we release it
– We decide who runs first by passing them the lock

directly (in a virtual sense)

● We have a couple more variables now...

boolean lock = 0;
boolean waiting[N]={0, 0, ...};

Solution with bounded waiting

while (1){
 local key, j;

 waiting[i]=1;
 key=1;
 while (waiting[i]&&key)
 key = test_and_set(&lock);
 waiting[i] = 0;
 /* Critical Section */
 j = (i+1)%N;
 while (j!=i&&~waiting[j])
 j=(j+1)%N;
 if (i==j)
 lock=0;
 else
 waiting[j]=0;
}

How it is implemented

● Intel has cmpxchg which is compare-and-swap
– If executed with bus lock
– Lock guarantees that nothing will happen during the

execution of of compare-and-swap

● RISC-V has LL/SC
– Load-linked, store-conditional
– Aka load-reserve
– Here is a version of CaS.

cas:
 lr.w t0, (a0)
 bne t0, a1, fail
 sc.w a0, a2, (a0)
 jr ra
fail:
 li a0, 1
 jr ra
(RISC-V manual)

Mutex Locks

● The techniques so far were for the system
programmer.

● An application programmer needs easier to use
tools.

release(){
 available = true;
}

acquire(){
 while (!available)
 ;
 available = false;
}

Mutex Locks

● To use them we acquire the mutex before the
CS and release it afterwards

while (true){
 acquire();
 /*Critical section*/
 release();
 /*Remainder Section*/
}

Some Terminology

● Lock Contention
– Low contention locks: few threads attempt to

acquire them at the same time
– High Contention Locks. The opposite

● Short Duration Spinlock
– When the expected duration is less than 2 context

switches
– Makes sense in multicore CPUs.

Semaphores

● The real celebrity of synch mechanisms.
● It is an integer (at least in theory)
● Accessed only through two operations

– signal()
– wait()

● Most OSes have an implementation of
semaphores

Semaphores

● There are two kinds
– Counting semaphores

● The most flexible/powerful

– Binary semaphores
● Mutexes, really.

● There is nothing that the one can do and the
other cannot.

Semaphores

wait(S){
 while (S<=0)
 ;
 S--;
}

signal(S){
 S++;
}

How to use the Semaphores

while (1)
{
 wait(Smutex);
 /* Critical Section */
 signal(Smutex);
 /* remainder */
}/* P2 */

wait(Scond);
/* Critical Section */

/* P1 */
/* Critical Section */
signal(Scond);

/* Initialize */
Smutex = 1;

/* Initialize */
Scond = 0;
/* This use is uncommon, but
a variant is common */

How to Abuse Semaphores

/* Process 1 */
while (true){
 wait(mutex1);
 wait(mutex2);
 /* CS */
 signal(mutex1);
 signal(mutex2);
}

/* Process 2 */
while (true){
 wait(mutex2);
 wait(mutex1);
 /* CS */
 signal(mutex1);
 signal(mutex2);
}

Semaphore Implementation

● Semaphores are simple and powerful but still use
spinlocks (busy waiting)

● Can be implemented so that they avoid long
spinlocks.

● The spinlock cannot be completely avoided
– It is needed for mutual exclusion within the

semaphore.
– The CS within the semaphore lasts very little so it is

unlikely that any process will find this CS occupied.

Semaphore Implementation

wait(sem *S){
 S->val--;
 if (S->val<0)
 {
 enqueue(me,&(S->list));
 block();
 }
}

signal(sem *S){
 S->val++;
 if (S->val<=0)
 {
 dequeue(&proc,&(S->list));
 wakeup(proc);
 }
}

typedef struct{
 int val;
 struct proc *list
} sem;

Semaphore Implementation

● What could go wrong?
– Assume we have mutex etc...
– Before blocking, the process has to release the

mutex (o/w nobody will be able to unlock it)
– Between releasing the mutex and blocking, another

process may execute signal and the wakeup call
finds nobody sleeping. Meanwhile the process that
goes to sleep will be sleeping ever-after.

Semaphore Implementation

● We have to protect the code with mutexes
● We have to release the mutex and block in one

go (atomic operation)
● It is hard (even counterproductive) to eliminate

spinlocks completely since they are used during
the short period where we check the variables
and rearrange the queues.

Priority inversion

● Consider three processes H, M, and L that have
high, medium and low priority respectively.

● Process L holds a resource R (usually to update
something in the kernel)

● Process M becomes ready and, since it has higher
priority than L, takes the CPU

● Then process H comes and tries to get resource R
and blocks. Meanwhile process M runs for as long
as it desires.

Priority Inversion

● Solution is priority inheritance.
– The priority of a process is the max of its inherent

priority and the priority of the resources it holds.
– The priority of a resource is the max of the priorities

of the processes that wait for it and zero o/w

● In the situation above, process L would run
temporarily with the same priority as H because
it holds a resource that H waits for.

Monitors

● Semaphores are great, but more suitable for low
level programming
– Simple, powerful and efficient
– Easy to write great code or poor code
– Concurrent programs are hard to debug, with

semaphores even harder
– Hard to write modern object oriented code with raw

semaphores

● Hence monitors

What can go wrong with
Semaphores

● For example:
– This -----------> while (true){

 /* become hungry */
 signal(chair)
 /* get to eat */
 wait(chair);
 /* think */
}

What can go wrong with
Semaphores

● We may have wait and signal in the wrong order,
or two waits or two signals in a row.

● The compiler cannot detect this
– In many cases a signal has to come before a wait.
– Very often a wait and the corresponding signal are in

different functions, even different files.
– Most commonly semaphores (or other similar primitive

objects) are used to provide mutual exclusion or as a
place for a process to block until a condition is satisfied.

Enough Already
What is a Monitor?

● Different languages that use monitors have
different approaches and interpretations
– Java has provisions for synchronized methods in

classes, along with condition variables, semaphores
and mutexes.

– Concurrent Pascal has practically vanilla monitors.
– Pthreads has a bare bones system of mutexes and

condition variables.

Enough Already
What is a Monitor?

● Looks like this:

Monitor

monitor Buffer{
 /* shared variables */
 int saved;
 condition emptyq, fullq;
 ...
 /* methods */
 function put(int item){
 ...
 }
 /* initialization code */
 init_code(){
 ...
 }
}

How it works

● Only one process can execute an operation
inside the monitor

● If a process has to wait for a resource (ie a
condition to become true) it joins a queue and
blocks. The queue is (usually) called condition
variable.

● If a process causes a change in the state of a
condition, should signal this condition.

What is more Powerful?

● Is there anything that one can do with monitors
that is not possible with semaphores?

● We find the answer in one of two ways
– Solve all the problems using semaphores

● (There are too many problems...)

– Implement monitors using semaphores.

● We, of course, choose the second option.

Implement Monitors Using
Semaphores

Wait Operation

 xcnt++;
 if (next_cnt>0)
 signal(next);
 else
 signal(mutex);
 wait(x_sem);
 xcnt--;

Externally callable methods

 wait(mutex);
 /* Body of method */
 if (next_cnt>0)
 signal(next);
 else
 signal(mutex);

Signal Operation

 if (xcnt>0){
 next_cnt++;
 signal(x_sem);
 wait(next);
 next_cnt--;
 }

Variables
 next: semaphore for processes
 to wait
 next_cnt: number of processes
 signaled but waiting
 mutex: mutex semaphore
 x_sem: semaphore for the x
 condition variable
 xcnt: number of processes
 waiting

Bounded Buffer Problem

● The variety of Producer-Consumer problems
that have fixed buffer size (like we saw in the
beginning of the chapter)

● Needs three semaphores
– One for mutex
– One to block the consumer if the buffer is empty
– One to block the producer if the buffer is full

Bounded Buffer Problem

while (true){
 /* Produce something */
 wait(empty_spot);
 wait(mutex);
 /* place in buffer */
 signal(mutex);
 signal(full_spot);
}

while (true){
 wait(full_spot);
 wait(mutex);
 /* get from buffer */
 signal(mutex);
 signal(empty_spot);
 /* Consume item */
}

#define N 512;

Semaphore mutex = 1;
Semaphore empty_spot = N;
Semaphore full_spot = 0;

Readers-Writers

● Assume that there are several processes that
need to read some data

● There are also processes that update the data
● We can let many readers to read at the same

time
● But writers have to be alone to avoid

inconsistent states.

Readers Writers

while (true){
 wait(wmutex);
 /* Do updates */
 signal(wmutex);
}

while (true){
 wait(rmutex);
 readcnt++;
 if (readcnt==1)
 wait(wmutex);
 signal(rmutex);
 /* Read... */
 wait(rmutex);
 readcnt--;
 if (readcnt==0)
 signal(wmutex);
 signal(rmutex);
}

The Dining Philosophers Problem

● The iconic synchronization problem
● There are N philosophers (make N=5) around a

table.
● There are also N chopsticks between every two

neighboring philosophers
● Philosophers are in one of three states:

thinking, eating, hungry.
● A philosopher needs two chopsticks to eat.

Dining Philosophers Problem

How to Avoid Deadlock

● There are many different ways to do it:
– Let N-1 philosophers to the table.
– Let even numbered philosophers pick up the left

chopstick first and odd numbered the right
– Allow philosophers to pick up the chopsticks only

when both are available.
– Allow philosophers pick up the lower indexed

chopstick first

Naive Solution w/ semaphores

Philosopher i

while (true){
 /* become hungry */
 wait(c[i]);
 wait(c[(i+1)%5]);
 /* get to eat */
 signal(c[(i+1)%5]);
 signal(c[i]);
 /* think */
}

Table Restrictions

Philosopher i

while (true){
 /* become hungry */
 wait(chair)
 wait(c[i]);
 wait(c[(i+1)%5]);
 /* get to eat */
 signal(c[(i+1)%5]);
 signal(c[i]);
 signal(chair);
 /* think */
}

 c[i] = 1;
 chair = 4;

Odd-Even

Philosopher i

while (true){
 /* become hungry */
 if (even(i)){
 wait(c[i]);
 wait(c[(i+1)%5]);
 } else {
 wait(c[(i+1)%5]);
 wait(c[i]);
 }
 /* get to eat */
 signal(c[(i+1)%5]);
 signal(c[i]);
 /* think */
}

Both or Nothing

Philosopher i

while (true){ /*become hungry*/
 wait(mutex);
 st[i]=HUNGRY;
 if (st[(i-1)%5]!=EATING &&
 st[(i+1)%5]!=EATING){
 st[i] = EATING;
 signal(mutex);
 } else {
 signal(mutex);
 wait(P[i]);
 }
 /* get to eat */

Philosopher i (cont.)

 /* get to eat */
 wait(mutex);
 st[i] = THINKING; /* think */
 if (st[(i-2)%5] != EATING &&
 st[(i-1)%5] == HUNGRY){
 st[(i-1)%5] = EATING;
 signal(P[(i-1)%5]);
 }
 /* same for the right
 Philosopher */
 signal(mutex);
}

Dining Philosophers with Monitors

init_code(){
 for (int i=0; i<5; i++)
 st[i]=THINKING;
}

monitor DinPhil{
 void pickup(int i){
 st[i] = HUNGRY;
 test(i);
 if (st[i]!=EATING)
 P[i].wait();
 }
 void putdown(int i){
 st[i]=THINKING;
 test((i+4)%5);
 test((i+1)%5);
 }
 void test(int i){
 If ((st[(i+4)%5]!=EATING)&&
 (st[i]==HUNGRY)&&
 (st[(i+1)%5]!=EATING)){
 st[i]=EATING;
 P[i].signal();
 }
}

enum {THINKING, HUNGRY, EATING} st[5];
condition P[i];

Synchronization in Windows

● For things that are of short duration inside the kernel
– Uses interrupt masks on uniprocessors
– Uses spinlocks on multiprocessors
– Avoids preemption while on spinlock

● Outside the kernel uses dispatcher objects
– Mutexes
– Semaphores
– Events (similar to condition variables)
– Timers (wake a process that blocked more than a specified

time)

Synchronization in Windows

● Dispatcher objects can be
– In signaled state
– In non-signaled state.

● Processes blocked on a non-signaled state are
placed on a queue. And the state of the process
is waiting.

● When a signal is executed one (or more)
processes will be woken up.

Synchronization on Linux

● For very simple kernel operations Linux provides
atomic increment, addition, etc for integers.
– These are implemented with the help of hardware (bus

locking or monitoring)

● For more complex kernel operations Linux has
mutexes, semaphores, reader-writer locks etc.

● In single processor systems interrupt disabling is used
● In multi processor systems spinlocks are used

– System does not preempt processes that hold locks

Pthreads

● The main API for multithreading in Linux.
● Defined by POSIX not by the Linux kernel
● Provides mutex locks, condition variables and read-

write locks
● A wait() on a condition variable requires a mutex as

a second argument to release atomically before
blocking.

● Many implementations of Pthreads offer
semaphores as well.

Pthreads vs Monitors

● Both use condition variables.
● Both have a kind of mutex mechanism
● Little else

Mutex

● There are different kinds of mutex in Pthreads
– Fast and risky (PTHREAD_MUTEX_NORMAL)
– Slow and safe

(PTHREAD_MUTEX_ERRORCHECK)
– There are others too

Condition Variables

● Condition variables are similar to the condition
variables in monitors

● When one locks a condition variable, one has to
provide the mutex.

● When one unlocks a condition variable (signal or
broadcast) no mutex needs to be provided.

● If a process wakes up from a condition variable, it
has to compete with other processes to re-acquire
the mutex.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

