Operating Systems

Threads
Based on Ch. 4 of
OS Concepts by SGG

Is this about sewing

Thread Is a basic unit of computation
— A process contains one or more threads

- The all share their code, data, resources (open files, sockets,
pipes, signhals(?), etc)

- They have separate thread ID, program counter, registers,
stack.

Many modern applications are multi threaded
Multicore designs make multithreading attractive

The model for modern GPUs is SIMT (Single Instruction
Multiple Threads)

Kinds of Threads

e User level threads
- Require no intervention by the OS

— Could (in theory or in a dream) be written by any user;
Very tricky to avoid blocking, starvation, etc

- Low overhead (aka LWP: LightWeight Processes)

* Kernel level threads
— Are treated (almost) as processes
— Kernel provides proper blocking, scheduling etc
- Can take advantage of multicore architectures

Examples

* A sophisticated application with a complex GUI
may be multithreaded with one thread attending
the GUI and the other the background
computation.

 Aweb server may assign every request to a
different thread to take advantage of the
multicore CPU and let some threads work while
the others are blocked. Same for other kinds of

Servers

Benefits

* Cheaper than processes (sharing resources,
faster context switching)

- By mixing user and kernel threads the cost goes
even lower

e Can attend multiple tasks at once;
responsiveness

e Faster and less restrictive communication
* Can make use of multiple cores

Parallelism vs Concurrency

* Two process/threads run in parallel if they run
on multilpe CPUs/cores

* Two process/threads run concurrently if they all
make progress (run in parallel or share a CPU
by alternating on It)

Models

e All user level threads

— One process (kernel level thread) handles all the threads (aka many to
one)

— A blocking system call would block all threads
* Real world implementations provide simple workarounds

— Cannot make use of multicore architectures
- Examples: Sun LWP, Green Threads

* All kernel level threads
— One user level thread per kernel thread (aka one to one)
— Great, but can be costly in resources (memory or time)
- Example: Linux threads

Models

e Mixed

— A group of kernel level threads share several user level
threads

— There should be more user level threads than kernel ones

- A user level thread may block

* Either because executed a blocking system call (the
corresponding kernel may or may not block)

* Or because had to wait for another thread (the corresponding
kernel should not block)

- Solaris implements such a model

Libraries

* There can be two types of thread libraries
- User space libraries
- Kernel space libraries

* Pthreads can be either
* Windows libraries are kernel space

e Java threads use the threads of the underlying
OS

Pthreads

* Main thread library of Linux/Unix world

* It is a specification
- All pthread implementations can run the same code
- Each is implemented differently

 Global data Is available to all
* Address space Is shared

* Threads are created and then are given a function
pointer and data to start.

* Have join and other synch mechanisms

Windows threads

Similar to pthreads
It Is an Implementation rather than specification
Has same access to global data

Minor differences like create and start a thread
INn one step

Comparable sync mechanism

Implicit Threading

* Classical multi threaded code is hard to write
and the thread overhead can negate the
benefits of threading

* Today we have multicore processors (and
GPUs) with more than a thousand cores
(processing elements)

Thread Pools

* One approach Is to maintain a pool of threads
that stay idle until they are needed

e The number of threads needed Is estimated
empirically or intuitively

* Solves the problem of overhead

OpenMP

* Open Multiprocessing makes use of
multithreading with the help of directives like

- #pragma omp parallel

* These directives tell the compiler to attempt to
parallelize

Threading Issues

 \What about fork and exec

- Does the new program replace/duplicate all the
threads of the process pod or just the calling one

 Who handles the signals
— Deliver it to the thread to which applies
- Deliver to every thread

- Deliver it to some threads

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

