

Operating Systems

Threads
Based on Ch. 4 of

OS Concepts by SGG

Is this about sewing

● Thread is a basic unit of computation
– A process contains one or more threads
– The all share their code, data, resources (open files, sockets,

pipes, signals(?), etc)
– They have separate thread ID, program counter, registers,

stack.

● Many modern applications are multi threaded
● Multicore designs make multithreading attractive
● The model for modern GPUs is SIMT (Single Instruction

Multiple Threads)

Kinds of Threads

● User level threads
– Require no intervention by the OS
– Could (in theory or in a dream) be written by any user;

Very tricky to avoid blocking, starvation, etc
– Low overhead (aka LWP: LightWeight Processes)

● Kernel level threads
– Are treated (almost) as processes
– Kernel provides proper blocking, scheduling etc
– Can take advantage of multicore architectures

Examples

● A sophisticated application with a complex GUI
may be multithreaded with one thread attending
the GUI and the other the background
computation.

● A web server may assign every request to a
different thread to take advantage of the
multicore CPU and let some threads work while
the others are blocked. Same for other kinds of
servers

Benefits

● Cheaper than processes (sharing resources,
faster context switching)
– By mixing user and kernel threads the cost goes

even lower

● Can attend multiple tasks at once;
responsiveness

● Faster and less restrictive communication
● Can make use of multiple cores

Parallelism vs Concurrency

● Two process/threads run in parallel if they run
on multilpe CPUs/cores

● Two process/threads run concurrently if they all
make progress (run in parallel or share a CPU
by alternating on it)

Models

● All user level threads
– One process (kernel level thread) handles all the threads (aka many to

one)
– A blocking system call would block all threads

● Real world implementations provide simple workarounds

– Cannot make use of multicore architectures
– Examples: Sun LWP, Green Threads

● All kernel level threads
– One user level thread per kernel thread (aka one to one)
– Great, but can be costly in resources (memory or time)
– Example: Linux threads

Models

● Mixed
– A group of kernel level threads share several user level

threads
– There should be more user level threads than kernel ones
– A user level thread may block

● Either because executed a blocking system call (the
corresponding kernel may or may not block)

● Or because had to wait for another thread (the corresponding
kernel should not block)

– Solaris implements such a model

Libraries

● There can be two types of thread libraries
– User space libraries
– Kernel space libraries

● Pthreads can be either
● Windows libraries are kernel space
● Java threads use the threads of the underlying

OS

Pthreads

● Main thread library of Linux/Unix world
● It is a specification

– All pthread implementations can run the same code
– Each is implemented differently

● Global data is available to all
● Address space is shared
● Threads are created and then are given a function

pointer and data to start.
● Have join and other synch mechanisms

Windows threads

● Similar to pthreads
● It is an implementation rather than specification
● Has same access to global data
● Minor differences like create and start a thread

in one step
● Comparable sync mechanism

Implicit Threading

● Classical multi threaded code is hard to write
and the thread overhead can negate the
benefits of threading

● Today we have multicore processors (and
GPUs) with more than a thousand cores
(processing elements)

Thread Pools

● One approach is to maintain a pool of threads
that stay idle until they are needed

● The number of threads needed is estimated
empirically or intuitively

● Solves the problem of overhead

OpenMP

● Open Multiprocessing makes use of
multithreading with the help of directives like
– #pragma omp parallel

● These directives tell the compiler to attempt to
parallelize

Threading Issues

● What about fork and exec
– Does the new program replace/duplicate all the

threads of the process pod or just the calling one

● Who handles the signals
– Deliver it to the thread to which applies
– Deliver to every thread
– Deliver it to some threads

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

