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Mass Storage Devices

● Disks
– A r/w head “flies” above the spinning disk
– Each disk is divided into tracks and each track in sectors
– A set of tracks on different platters is a cylinder
– Rotational velocity is important. Most drives are at 7200, 10,000 or 15,000 rpm
– Positioning time is seek time plus rotational latency

● SSDs
– No moving parts, but finite number of r/w ops
– Smaller, faster (recently), cooler, quieter than HDDs
– Zero positioning time, huge transfer rates
– Can be written, can be read, can be erased (a whole block at a time), but cannot be 

overwritten.
● Tricky to erase a single page within a block.
● Hard to keep the number of erasings to a minimum.



  

Volatile Disks

● Mapped to memory
● Known as ram disks or ram drives
● Useful for mapping /tmp or root filesystem for 

booting.



  

Busses

● ATA: Antedeluvian Technology Attachment
● SATA: Serial ATA (6Gb/s, ~600MB/s)
● M.2: several times faster than SATA depending 

on configuration
● PCIe: up to 32Gb/s
● eSATA: external SATA
● USB: 10Gb/s (for 3.1)



  

Disk Structure

● Disk space is split into blocks (512byte is common)
● Blocks are mapped onto sectors
● Mapping is almost one-to-one

– We have to skip defective sectors
– We have to arrange for replacement sectors
– We have to keep the info about replacement sectors

● Mapping gets trickier for disks that do not have the 
same number of sectors per cylinder



  

Disk Attachment

● Host-Attached Storage
– Disks, RAIDs, DVD-ROMs, etc
– All in the same box

● Network Attached Storage
– Disks are somewhere on a (local area) network
– Shared by many computers
– Used with NFS, SSHFS, SMB (CIFS)

● Storage Area Network
– Uses a special purpose network just for file serving
– Several disk arrays and file servers connected to it
– Usually uses Fiber Channel.



  

Disk Scheduling

● Seek time and rotational latency are important 
factors in the overall latency on disks

● We can minimize them by reordering the 
outstanding requests
– Avoid having the disk head go in and out like mad
– Not different than an elevator.



  

FCFS

● Fair but inefficient
● Can even lead to premature failure if the first 

and last cylinder are addressed alternatively



  

Shortest Seek Time First

● Selects the next destination to be the “closest”
● Performs very well, but it is not optimal
● Can suffer from starvation



  

SCAN, C-SCAN

● With SCAN we sweep from the first cylinder to 
the last and back servicing requests on the way

● C-SCAN (Circular), like scan but service 
requests only in the forward direction (more 
uniform waiting time)

● Linux deadline scheduler. Separate read and 
write queues (two of each one FCFS another 
LBA (log. Block Address) i.e. SCAN)



  

Selecting Disk Scheduling Algorithm

● None is optimal
● For very low traffic, all are more or less the 

same
● For medium traffic SSTF has an advantage
● For heavy traffic SCAN et al exhibit no 

starvation.



  

Disk Formatting

● Low level formatting
– Usually at the factory
– Involves setting up headers/trailers, with ECC
– Identification of bad blocks

● High level formatting
– Partitioning the disk
– Setting up filesystems on partitions

● FS like vfat, ext4, btrfs, raiserfs
● Raw or swap space



  

MBR

● Master Boot Record
● Microsoft term
● Contains the partition table, boot code
● Identifies the boot partition



  

GPT

● Master Boot Record successor
● Can be used on bigger disks
● Can have many more partitions
● Keeps multiple copies of itself
● GPT = GUID Partition Table

– GUID = Globally Unique Identifier

● Meant to be used with UEFI (successor of BIOS)
– UEFI = Unified Extended Firmware Interface



  

Boot Sequence

● The computer when powered up starts 
executing from its ROM

● The ROM is traditionally tiny (not any more)
● The code mainly identifies the disks and other 

devices and selects where to boot from
– The device must have at least a valid MBR (or GPT)

● Part of the boot is POST
– POST = Power On Self Test



  

Bad Blocks

● Almost every disk has a few bad blocks
– We use ECC to find out which.

● These are identified and replacements (spares) are 
used.

● Two techniques are used:
– Replace the bad block with a spare

● Neat but results in blocks being out of order

– Shift all blocks between the bad and the spare by one 
position

● Preserves the order but need shifting (copying)



  

Swap space

● Every frame in the memory can be mapped to the disk 
in two ways
– If it is a memory-map from a (named) file (eg from a .so 

file) it is mapped to the original (named) file
– All other frames (the anonymous memory) are mapped to 

the swap space

● The swap space can be of two kinds
– A partition on the disk
– A large file created to act as swap space (swapon 

command)



  

RAID

● Redundant Array of Independent Disks
● A medium system with 100 disks, if each disk 

has MTBF 100,000 hours, will fail every 1000 
hours (about a month and a half)

● A home system with 2 disks, if each disk has 
MTBF 100,000 hours, will fail every about 5 
years.



  

RAID for Safety

● Mirroring is the simplest approach
● The system will fail if the second disk fails while 

we recover the data of the first
– If MTBF is 100,000h
– And MTTR is 10h
– We get one recoverable fail every 50,000h
– And a fatal fail every 500,000,000h (50 centuries)



  

RAID for Performance

● We can use stripping
– If we have 8 disks we store one bit of every byte on 

different disks. This is bit level stripping.
– We can increase the (read) transfer rate 8 times

● The positioning time goes up, since the positioning time 
of the RAID is the positioning time of the slowest

– When we write we involve all disks

● We can also have byte level and block level 
stripping.



  

RAID Levels

● RAID 0: just stripping
● RAID 1: just mirroring
● RAID 2: ECC redundancy
● RAID 3: bit interleaved parity
● RAID 4: block interleaved parity
● RAID 5: block interleaved distributed parity
● RAID 6: like 5 but can handle 2 errors
● RAID 01 or 10: stripping and mirroring



  

Implementing RAID

● Hardware (Host Bus Adapter), motherboard, or 
special disk array

● Kernel based
● SAN



  

Problems with RAID

● Most disk problems happen around power 
failures, during boot, natural disasters, etc
– Ie failures are not statistically independent.

● Disks from the same batch often fail together
● No protection against corruption by faulty 

software, malware, etc.
● In simple mirrored systems, after a fault we still 

have to find which is the correct version.



  

Solaris ZFS

● Uses checksums to ascertain the correctness of 
each block

● The checksum is stored separately (in the i-
node)

● The checksum of the i-node is stored in the 
directory that contains the file. And so on...

● ZFS also does volume management (allows N 
filesystems to share M RAID clusters)
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I/O Hardware

● Bus: a set of wires and a communication protocol 
(electric characteristics, handshake sequence, 
transmission parameters/encoding, etc)

● A bus could be two wire (half duplex serial bus),  or 
have many wires

● Can be simple and cheap (like I2C for simple projects)
● Can be expensive (like PCIe x32)
● Buses (may) have controllers (special purpose chips) 

to coordinate the devices connected to them.



  

Typical buses

● PCIe
– Can have 1, 2, 4, 8, 12, 16 or 32 lanes (two pairs of 

wires)

● SAS (Serial Attached SCSI)
● SATA (daughter fo PATA, Parallel AT 

Attachment)
● USB bus



  

Memory mapped I/O

● Happens at the hardware level
● Every controller has registers that the CPU can 

read and write
● The CPU can have physical ports with 

dedicated port lines (old or simple systems)
● Or the registers could be mapped to addresses 

in the physical memory



  

Memory mapped I/O

● Typically there are four registers
– Data in
– Data out
– Status: for the device to send feedback to CPU
– Control (or command): for the CPU to send 

commands to the device

● The registers could be several bytes long and 
have FIFOs attached to them



  

Polling

● The CPU checks periodically the status of all 
devices (until device is not busy)

● Then places command on the control register
● Eventually the device will see that the command is 

available and execute it
● Execution may involve further communication 

through the data registers.
● In the end the controller indicates to the CPU that 

the command succeeded/failed.



  

Interrupts

● The other way to communicate is through 
interrupts.

● Typical senario:
– Device controller raises an interrupt
– CPU catches the interrupts and dispatches it to ISR 

(or handler) to service it
– After that the interrupt is cleared and regular CPU 

things resume



  

Interrupts

● Interrupts can be deferred or masked (may be 
not all of them)

● Can have an address with them
● Can have interrupts with varying priorities
● Can have software traps



  

DMA

● For the exchange of small chunks of data direct 
communication between CPU and device is 
OK.

● For large chunks we use DMA
– CPU writes a DMA control bloc to memory
–  Informs the device through the control register
– The device informs the CPU through the status 

register/interrupt.
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File Attributes

● Name
● File ID
● Type
● Location
● Size
● Protection
● Time, date, etc
● User



  

File Attributes on Linux

● A directory contains a list of file-names and their 
associated inode (or i-node) numbers.

● The inode number is a pointer (integer) to the i-
node table.

● Every entry to the table contains information 
like:

● Device ID, i-node number, mode and type, number of 
hardlinks, user/group ID, special file info, size, number of 
blocks allocated, block size, times, 



  

Extended File Attributes

● Application that created the file
● Icon
● Character encoding
● Checksums
● Security attributes



  

File Operations

● Read
● Write
● Create
● Delete
● Truncate
● Reposition
● Lock (shared/exclussive, advisory/mandatory)
● To make these more efficient we also have open/close



  

File types

● These used to be many
● Linux keeps it to a minimum

– Regular, directory, symbolic link, device, pipe, etc

● Windows has more



  

Directories

● The filesystem is a reliable name-space
● It is a graph

– Tree
– DAG for the adventurous
– General graph for the suicidal

● Can have hard links to create cycles



  

Mounting

● We attach disks with filesystems on our 
namespace

● Windows is simple: C: D: etc
● Linux is very sophisticated
● Can attach on filesystems

– Kernel structures
– Remote systems
– etc



  

Protection

● In Linux we use owner, group, other to group  
users

● Read, Write Execute to group actions
● Simple but try to use it to implement Moodle.



  

FAT

● Stands for “File Allocation Table”
● Developed in 1977
● Flavours: FAT8, FAT12, FAT16, FAT32
● Contains:

● Boot sector (with partition table)
● File Allocation table (2 copies)
● Root directory
● Data segment (other directories and all files)



  

FAT

● Every entry of the FAT contains the next block 
(cluster) of the file.

● Some entries have special meaning (FAT16):
– 0x0000 available
– 0xFFF7 damaged block
– 0xFFF8 end of file.



  

FAT Sizes

● FAT12:
– 12 bit/entry, 4096 entries, 4k bytes/cluster-> about 

15MB

● FAT16:
– 16 bit/entry, 64K entries, 2K bytes/cluster -> about 

127MB

● FAT16:
– 16 bit/entry, 64K entries, 8K bytes/cluster -> about 

511MB



  

FAT example

EOF

Avail

4

2

Avail

EOF

BAD

Avail

Yourfile->5

Myfile->1

<empty>

<empty>

<empty>



  

VFAT

● Successor to FAT/FAT32
● Introduced by Windows 95
● Allows bigger file names, spaces, etc

– Does this through aliasing to achieve backwards 
compatibility



  

EXT2

● The grandfather of ext4 filessytem
– Ext4 adds journaling

● The inode under ext2 contains:
– The fstat info
– Pointers to 12 blocks with the file data
– A pointer to a block of 128 pointers to data blocks (indirect block)
– A pointer to a block of 128 pointers to a block of 128 pointers to data blocks 

(doubly indirect block)
– A pointer to a .... (trebly indirect block)

● Total 15 pointers
● Number of entries on indirect blocks depends on block size.
● The block size cannot be bigger than the page size.



  

EXT2

● Directories are special files
● Contain a table of directory entries
● Each entry is a name and an inode number

– Ext3 allows also a data structure more efficient than a 
simple table.

● A directory always has these two entries:
– . and ..

● Uses a data allocation bitmap and tries to allocate 
blocks in nearby areas of the disk



  

EXT2

● Simple an efficient. Lack of journaling means 
fewer writes (good for flash memories)

● Today ext4 (its grandchild) is used
● With 512byte block, 128 pointers per pointer 

block can have up to about 1GB files.



  

EXT2 Details

● Blocks belong to block groups
– Blocks in a group are located nearby (mimize seeks)
– Blocks in the same group share many pointer bits
– Makes pointers smaller

● Block groups are described in the superblock
● Every block group contains a copy of the 

superblock, block group descriptor table, block 
allocation bitmap, inode table, inode bitmap and 
data blocks.



  

EXT2 Sizes

● Depend on number of blocks, size of blocks, 
number of inodes

● Block size cannot be larger that the page size
● Hard upper limits

– Max volume size 2-32TB
– Max file size 16GB-2TB
– Max filename length 255 char



  

EXT4

● Currently the default Linux FS
● Successor to ext3
● Handles huge storage volumes, huge files
● Uses extends (ranges of contiguous blocks)
● High res timestamps (nsec)
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