

Operating Systems

Mass-Storage Structure
Based on Ch. 10-11 of
OS Concepts by SGG

Mass Storage Devices

● Disks
– A r/w head “flies” above the spinning disk
– Each disk is divided into tracks and each track in sectors
– A set of tracks on different platters is a cylinder
– Rotational velocity is important. Most drives are at 7200, 10,000 or 15,000 rpm
– Positioning time is seek time plus rotational latency

● SSDs
– No moving parts, but finite number of r/w ops
– Smaller, faster (recently), cooler, quieter than HDDs
– Zero positioning time, huge transfer rates
– Can be written, can be read, can be erased (a whole block at a time), but cannot be

overwritten.
● Tricky to erase a single page within a block.
● Hard to keep the number of erasings to a minimum.

Volatile Disks

● Mapped to memory
● Known as ram disks or ram drives
● Useful for mapping /tmp or root filesystem for

booting.

Busses

● ATA: Antedeluvian Technology Attachment
● SATA: Serial ATA (6Gb/s, ~600MB/s)
● M.2: several times faster than SATA depending

on configuration
● PCIe: up to 32Gb/s
● eSATA: external SATA
● USB: 10Gb/s (for 3.1)

Disk Structure

● Disk space is split into blocks (512byte is common)
● Blocks are mapped onto sectors
● Mapping is almost one-to-one

– We have to skip defective sectors
– We have to arrange for replacement sectors
– We have to keep the info about replacement sectors

● Mapping gets trickier for disks that do not have the
same number of sectors per cylinder

Disk Attachment

● Host-Attached Storage
– Disks, RAIDs, DVD-ROMs, etc
– All in the same box

● Network Attached Storage
– Disks are somewhere on a (local area) network
– Shared by many computers
– Used with NFS, SSHFS, SMB (CIFS)

● Storage Area Network
– Uses a special purpose network just for file serving
– Several disk arrays and file servers connected to it
– Usually uses Fiber Channel.

Disk Scheduling

● Seek time and rotational latency are important
factors in the overall latency on disks

● We can minimize them by reordering the
outstanding requests
– Avoid having the disk head go in and out like mad
– Not different than an elevator.

FCFS

● Fair but inefficient
● Can even lead to premature failure if the first

and last cylinder are addressed alternatively

Shortest Seek Time First

● Selects the next destination to be the “closest”
● Performs very well, but it is not optimal
● Can suffer from starvation

SCAN, C-SCAN

● With SCAN we sweep from the first cylinder to
the last and back servicing requests on the way

● C-SCAN (Circular), like scan but service
requests only in the forward direction (more
uniform waiting time)

● Linux deadline scheduler. Separate read and
write queues (two of each one FCFS another
LBA (log. Block Address) i.e. SCAN)

Selecting Disk Scheduling Algorithm

● None is optimal
● For very low traffic, all are more or less the

same
● For medium traffic SSTF has an advantage
● For heavy traffic SCAN et al exhibit no

starvation.

Disk Formatting

● Low level formatting
– Usually at the factory
– Involves setting up headers/trailers, with ECC
– Identification of bad blocks

● High level formatting
– Partitioning the disk
– Setting up filesystems on partitions

● FS like vfat, ext4, btrfs, raiserfs
● Raw or swap space

MBR

● Master Boot Record
● Microsoft term
● Contains the partition table, boot code
● Identifies the boot partition

GPT

● Master Boot Record successor
● Can be used on bigger disks
● Can have many more partitions
● Keeps multiple copies of itself
● GPT = GUID Partition Table

– GUID = Globally Unique Identifier

● Meant to be used with UEFI (successor of BIOS)
– UEFI = Unified Extended Firmware Interface

Boot Sequence

● The computer when powered up starts
executing from its ROM

● The ROM is traditionally tiny (not any more)
● The code mainly identifies the disks and other

devices and selects where to boot from
– The device must have at least a valid MBR (or GPT)

● Part of the boot is POST
– POST = Power On Self Test

Bad Blocks

● Almost every disk has a few bad blocks
– We use ECC to find out which.

● These are identified and replacements (spares) are
used.

● Two techniques are used:
– Replace the bad block with a spare

● Neat but results in blocks being out of order

– Shift all blocks between the bad and the spare by one
position

● Preserves the order but need shifting (copying)

Swap space

● Every frame in the memory can be mapped to the disk
in two ways
– If it is a memory-map from a (named) file (eg from a .so

file) it is mapped to the original (named) file
– All other frames (the anonymous memory) are mapped to

the swap space

● The swap space can be of two kinds
– A partition on the disk
– A large file created to act as swap space (swapon

command)

RAID

● Redundant Array of Independent Disks
● A medium system with 100 disks, if each disk

has MTBF 100,000 hours, will fail every 1000
hours (about a month and a half)

● A home system with 2 disks, if each disk has
MTBF 100,000 hours, will fail every about 5
years.

RAID for Safety

● Mirroring is the simplest approach
● The system will fail if the second disk fails while

we recover the data of the first
– If MTBF is 100,000h
– And MTTR is 10h
– We get one recoverable fail every 50,000h
– And a fatal fail every 500,000,000h (50 centuries)

RAID for Performance

● We can use stripping
– If we have 8 disks we store one bit of every byte on

different disks. This is bit level stripping.
– We can increase the (read) transfer rate 8 times

● The positioning time goes up, since the positioning time
of the RAID is the positioning time of the slowest

– When we write we involve all disks

● We can also have byte level and block level
stripping.

RAID Levels

● RAID 0: just stripping
● RAID 1: just mirroring
● RAID 2: ECC redundancy
● RAID 3: bit interleaved parity
● RAID 4: block interleaved parity
● RAID 5: block interleaved distributed parity
● RAID 6: like 5 but can handle 2 errors
● RAID 01 or 10: stripping and mirroring

Implementing RAID

● Hardware (Host Bus Adapter), motherboard, or
special disk array

● Kernel based
● SAN

Problems with RAID

● Most disk problems happen around power
failures, during boot, natural disasters, etc
– Ie failures are not statistically independent.

● Disks from the same batch often fail together
● No protection against corruption by faulty

software, malware, etc.
● In simple mirrored systems, after a fault we still

have to find which is the correct version.

Solaris ZFS

● Uses checksums to ascertain the correctness of
each block

● The checksum is stored separately (in the i-
node)

● The checksum of the i-node is stored in the
directory that contains the file. And so on...

● ZFS also does volume management (allows N
filesystems to share M RAID clusters)

Operating Systems

I/O Systems
Based on Ch. 11 of

OS Concepts by SGG

I/O Hardware

● Bus: a set of wires and a communication protocol
(electric characteristics, handshake sequence,
transmission parameters/encoding, etc)

● A bus could be two wire (half duplex serial bus), or
have many wires

● Can be simple and cheap (like I2C for simple projects)
● Can be expensive (like PCIe x32)
● Buses (may) have controllers (special purpose chips)

to coordinate the devices connected to them.

Typical buses

● PCIe
– Can have 1, 2, 4, 8, 12, 16 or 32 lanes (two pairs of

wires)

● SAS (Serial Attached SCSI)
● SATA (daughter fo PATA, Parallel AT

Attachment)
● USB bus

Memory mapped I/O

● Happens at the hardware level
● Every controller has registers that the CPU can

read and write
● The CPU can have physical ports with

dedicated port lines (old or simple systems)
● Or the registers could be mapped to addresses

in the physical memory

Memory mapped I/O

● Typically there are four registers
– Data in
– Data out
– Status: for the device to send feedback to CPU
– Control (or command): for the CPU to send

commands to the device

● The registers could be several bytes long and
have FIFOs attached to them

Polling

● The CPU checks periodically the status of all
devices (until device is not busy)

● Then places command on the control register
● Eventually the device will see that the command is

available and execute it
● Execution may involve further communication

through the data registers.
● In the end the controller indicates to the CPU that

the command succeeded/failed.

Interrupts

● The other way to communicate is through
interrupts.

● Typical senario:
– Device controller raises an interrupt
– CPU catches the interrupts and dispatches it to ISR

(or handler) to service it
– After that the interrupt is cleared and regular CPU

things resume

Interrupts

● Interrupts can be deferred or masked (may be
not all of them)

● Can have an address with them
● Can have interrupts with varying priorities
● Can have software traps

DMA

● For the exchange of small chunks of data direct
communication between CPU and device is
OK.

● For large chunks we use DMA
– CPU writes a DMA control bloc to memory
– Informs the device through the control register
– The device informs the CPU through the status

register/interrupt.

Operating Systems

File System Interface
Based on Ch. 12 of

OS Concepts by SGG

File Attributes

● Name
● File ID
● Type
● Location
● Size
● Protection
● Time, date, etc
● User

File Attributes on Linux

● A directory contains a list of file-names and their
associated inode (or i-node) numbers.

● The inode number is a pointer (integer) to the i-
node table.

● Every entry to the table contains information
like:

● Device ID, i-node number, mode and type, number of
hardlinks, user/group ID, special file info, size, number of
blocks allocated, block size, times,

Extended File Attributes

● Application that created the file
● Icon
● Character encoding
● Checksums
● Security attributes

File Operations

● Read
● Write
● Create
● Delete
● Truncate
● Reposition
● Lock (shared/exclussive, advisory/mandatory)
● To make these more efficient we also have open/close

File types

● These used to be many
● Linux keeps it to a minimum

– Regular, directory, symbolic link, device, pipe, etc

● Windows has more

Directories

● The filesystem is a reliable name-space
● It is a graph

– Tree
– DAG for the adventurous
– General graph for the suicidal

● Can have hard links to create cycles

Mounting

● We attach disks with filesystems on our
namespace

● Windows is simple: C: D: etc
● Linux is very sophisticated
● Can attach on filesystems

– Kernel structures
– Remote systems
– etc

Protection

● In Linux we use owner, group, other to group
users

● Read, Write Execute to group actions
● Simple but try to use it to implement Moodle.

FAT

● Stands for “File Allocation Table”
● Developed in 1977
● Flavours: FAT8, FAT12, FAT16, FAT32
● Contains:

● Boot sector (with partition table)
● File Allocation table (2 copies)
● Root directory
● Data segment (other directories and all files)

FAT

● Every entry of the FAT contains the next block
(cluster) of the file.

● Some entries have special meaning (FAT16):
– 0x0000 available
– 0xFFF7 damaged block
– 0xFFF8 end of file.

FAT Sizes

● FAT12:
– 12 bit/entry, 4096 entries, 4k bytes/cluster-> about

15MB

● FAT16:
– 16 bit/entry, 64K entries, 2K bytes/cluster -> about

127MB

● FAT16:
– 16 bit/entry, 64K entries, 8K bytes/cluster -> about

511MB

FAT example

EOF

Avail

4

2

Avail

EOF

BAD

Avail

Yourfile->5

Myfile->1

<empty>

<empty>

<empty>

VFAT

● Successor to FAT/FAT32
● Introduced by Windows 95
● Allows bigger file names, spaces, etc

– Does this through aliasing to achieve backwards
compatibility

EXT2

● The grandfather of ext4 filessytem
– Ext4 adds journaling

● The inode under ext2 contains:
– The fstat info
– Pointers to 12 blocks with the file data
– A pointer to a block of 128 pointers to data blocks (indirect block)
– A pointer to a block of 128 pointers to a block of 128 pointers to data blocks

(doubly indirect block)
– A pointer to a (trebly indirect block)

● Total 15 pointers
● Number of entries on indirect blocks depends on block size.
● The block size cannot be bigger than the page size.

EXT2

● Directories are special files
● Contain a table of directory entries
● Each entry is a name and an inode number

– Ext3 allows also a data structure more efficient than a
simple table.

● A directory always has these two entries:
– . and ..

● Uses a data allocation bitmap and tries to allocate
blocks in nearby areas of the disk

EXT2

● Simple an efficient. Lack of journaling means
fewer writes (good for flash memories)

● Today ext4 (its grandchild) is used
● With 512byte block, 128 pointers per pointer

block can have up to about 1GB files.

EXT2 Details

● Blocks belong to block groups
– Blocks in a group are located nearby (mimize seeks)
– Blocks in the same group share many pointer bits
– Makes pointers smaller

● Block groups are described in the superblock
● Every block group contains a copy of the

superblock, block group descriptor table, block
allocation bitmap, inode table, inode bitmap and
data blocks.

EXT2 Sizes

● Depend on number of blocks, size of blocks,
number of inodes

● Block size cannot be larger that the page size
● Hard upper limits

– Max volume size 2-32TB
– Max file size 16GB-2TB
– Max filename length 255 char

EXT4

● Currently the default Linux FS
● Successor to ext3
● Handles huge storage volumes, huge files
● Uses extends (ranges of contiguous blocks)
● High res timestamps (nsec)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

