

Operating Systems

Deadlocks
Based on Ch. 7 of

OS Concepts by SGG

System Model

● Deadlocks can happen for many reasons
– Sloppy programming
– Hardware failure
– Inexpert human intervention
– Unusual sequence of allocations and deallocations

● We are interested only in the last mechanism.
● Allocation-deallocation has three phases

– Request (and may be block)
– Use
– Release

Conditions for Deadlock

● The Master of the Obvious proclaimed that a
deadlock can occur iff
– Mutual exclusion
– Hold and wait
– No Preemption
– Circular wait

● The “circular wait” means that there is a cycle in
the resource allocation graph

Resource Allocation Graph

● It is a graph with two kinds of nodes
– Processes
– Resources

● There are two kinds of edges
– Request edge (from a process to a resource)
– Assignment edge (from a resource to a process)

● Can be a bit more complex if the resources have
multiple identical copies.
– We do not explore the more complex variety.

General Methods for Handling
Deadlocks

● We can prevent deadlocks from occuring
● We can allow deadlocks to happen and recover

afterwards
● Ignore the issue (it is the responsibility of the

application)

Deadlock Prevention

● To prevent deadlocks we can make sure that at
least one of the conditions proclaimed by the
Master of the Obvious does not hold

● This may put unnecessary burden to the
system or reduce parallelizability (is this a
word?)

Deadlock Prevention

● Deny mutual exclusion
– Plain silly.

● Deny Hold-and-Wait
– Require a process to request all its resources in one system

call and only when it has none.
– Processes would have to request (and lock) many resources,

just in case. Also starvation is possible.

● Allow Preemption
– Plain old stealing. To make it work we have to be able to roll

back changes.

Deny Circular Waiting

● The trick is to arrange for a total order
– For every pair of resources we know which one is

before the other.

● Then impose the condition that resources have
to be allocated in this order

Deadlock avoidance

● We may increase the flexibility of the system if
we know what resources a process may use in
the future

● A process “claims” a resource when it
announces that it might request it in the future

● If the worst case senario would allow the
process to complete we let the process start
requesting resources. O/w we block it.

Safe State

Safe

UnsafeDeadlocked

Resource Allocation Graph

● We add a new type of edge called “claim”. If a
process may allocate a resource sometime in
the future we have an edge from the process to
the resource.

● If a process P requests a resource R then the
claim edge between them becomes request
edge.

● If the resource R is allocated then the request
edge becomes allocation edge (and flips)

Deadlock Avoidance using Graphs

R1

P1 P2

R2

R1

P1 P2

R2

Deadlock Detection

● We can run a cycle detection algorithm
● We can speed up the process by eliminating the

resource nodes.
– If process A waits for a resource allocated to

process B, the new graph contains an edge from A
to B

How often

● How often we invoke the deadlock detection
algorithm

● Not very often, because it is expensive
● When system is mostly idle, makes sense

– When a pool of processes are deadlocked, the
system will be idle.

Recovery from Deadlock

● Kill all deadlocked processes
● Kill one at a time and release its resources until

the system moves again
– We need to select the order to minimize cost
– Resources have to be in safe state

● Preempt one resource at a time and pass it on
to a process that requested it

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

