

Operating Systems

Virtual Memory
Based on Ch. 9 of

OS Concepts by SGG

Need for Virtual Memory

● Most Important: sounds good!
● We can run many huge programs on systems

with little memory (unusual on modern systems)
● We can avoid loading all the program if we

need to use a small part
● We do not need to load the whole program to

start execution and show the first response to
the user.

Demand Paging

● In virtual memory systems we do not need to
have every page available in the physical
memory
– The page table has a valid bit. If it is false the page

is missing

● When we try to access a page that is missing
because it is on the disk, we generate a page
fault
– The end result is to get the page we want

Page Faults

● What happens if a process tries to access a page that
is not in the memory?
– An interrupt is raised
– System checks if it is really a segmentation violation

(terminate?) or a simply a page fault
– If a page fault, we find a free frame (or a victim and grab it)
– Schedule a disk operation to bring it in, block the process,

and let the scheduler take over.
– When the page arrives, the process is put back on the

ready queue with its state restored.

Two Issues with Page Faults

● How do we restart an instruction interrupted by
a page fault.
– We deal briefly with this.

● How do we select a victim so that
– We minimize the number of page faults
– Increase efficiency

Locality of reference

● Most real world programs at any time use a few
pages only.
– If only we knew which, we could keep the program

optimally satisfied

● This is a common theme in cache memories,
TLBs, etc that we exploit.

Hardware Support Needed

● Page system, with valid bit or equivalent
● Ability to restart after an interrupt as if nothing

happened
● Swap space on a device like disk.

Restarting an Interrupted Instruction

● Most asynchronous interrupts can be serviced
at the boundaries of instructions
– That’s easy.

● A page fault happens in the middle of an
instruction. We cannot wait till the end of the
instruction
– This keeps computer architects safely employed

● We let computer architects solve this problem.

Restarting an Interrupted Instruction

● Some instructions are easy to restart
– Like: store reg. R3 to M[R4]

● Others are impossible:
– Copy a long array to another array

● Good luck if they overlap.

● Others are a bit tricky
– The instruction refers to two addresses on two different pages

and referencing the one causes the other to be kicked out

● Most such instructions have disappeared from modern
ISAs

Free-Frame List

● Usually systems keep a list of unused frames
● When a page fault occurs the system wastes no

time looking for a victim.
● The system should make sure the page is

zeroed before given to a process (security!)
● Occasionally the system searches for rarely

used pages and reclaims their frames.

Performance

● Disk access is around a few thousand times
slower than main memory access

● So if p is the probability of a memory reference
to result in a page fault, t is the time it takes for a
main memory access and T is the time to swap
in a page
– t_eff = (1-p)*t + p*T

● Probability p (aka page-fault rate) should be tiny

Copy-on-Write

● When we fork we create two identical processes.
– If a huge process wants to create a little short-lived utility

process it has to make a copy of itself! And then discard this
copy almost immediately with exec().

● There is a little trick to avoid all this waste
– Copy only the page tables and mark them copy-on-write.

● When a process writes anywhere on its address space it
causes a new copy of that page to be created.

● There is a video regarding a bug with the copy-on-write:
https://www.youtube.com/watch?v=CQcgz43MEZg

Page replacement

● Usually we allocate fewer frames to each process and not
the whole address space.

● This allows more processes to be resident and ready to run
● A typical process needs a certain number of frames to run

efficiently
● We have to optimize the whole page replacement process

– If we split the frames among too many processes, none of them
will have enough to run efficiently with few page faults

– If we split them among too few, the probability that all of them are
doing I/O or paging at the same time is large.

The Cost

● The cost of a page fault can be broken into four
main components
– Cost of servicing the interrupt
– Cost of saving the victim
– Cost of reading the new page
– Cost of restarting the process

● The first and the last are usually much smaller if
we do not get too ambitious.

Minimizing the cost

● The cost of swapping in a frame depends on the
disk, the bus, etc.

● The cost of writing back a victim on the same things
– But we do not always need to write it back
– We keep a “dirty” bit on the page table to indicate if a

page needs writing back
– We prefer to swap a “clean” page out

● Occasionally we write back pages to “clean” them.

Reducing the Frequency

● We would like to reduce the page-fault rate
● If every process has the number of pages it

needs it will create few page-faults
● The problem is we do not know how many

these are
● And if we avoid paging out pages that will be

needed soon, we further decrease page-faults.

Reference Strings

● Assume that we know how a process
references pages.
– We can emulate a program and record that info.

● We want to try a few algorithms and see how
they behave

FIFO

● Replace the oldest page first
● Simple, and needs minimal hardware support
● We can emulate it with a random string like

– 1,2,3,4,1,2,5,1,2,3,4,5

● And assume that we have either 2, 3, 4 or 5
frames available

● It exhibits Belady’s Anomaly

Optimal Page Replacement

● We hire a fortune teller or palm reader to tell us
which page is going to be needed further into
the future

● Works best in Harry Potter situations.
● But it is used to see how good is a new

algorithm
– If it is close to optimal, great!

LRU

● Like SJF we use the past as a guide to the
future

● Least Recently Used is a good approximation to
the optimal algorithm (in real life)

● It is hard to implement in an exact way
● We will talk about several approximations.

LRU Implementations

● Counters:
– Increment the counter at every memory access
– Every time a page is referenced we copy the counter to the

page table entry for this page
– The counter acts as a clock. Should be able to handle

overflow.

● Stack:
– Have all the pages in a linked list.
– Every time we reference a page we move the page to the

head of the list

LRU Implementations

● Both methods require constant updates to the
memory

● Both methods require extra memory
● Both methods try to find an exact solution to an

approximation
– Remember: LRU is a real world approximation of

the Optimal method.

Reference Bit

● We have a reference bit for every page in the
page table (right next to the valid bit)

● If the reference bit is true when we reference a
page we continue as usual

● If it is false, we set it to true.
● Periodically we clear all the reference bits
● If the bit is on it means that the page was

referenced at least once since the last purge.

Additional Reference bits

● A single bit is kind of crude.
– Immediately after a purge we do not know anything

about which pages are in use

● Have a second bit
– Periodically, copy the (first) reference bit onto the

(second) history bit and clear the first.
– This allows us to distinguish between recently and

very recently referenced pages

● Can have more than two history bits

Second Chance

● AKA clock algorithm
● It is essentially a FIFO replacement algorithm.
● If we get a page fault we select a victim as in

the usual FIFO page replacement algorithm
– If the victim has the reference bit set, we clear it

and find another victim
– If the reference bit is clear, we have a victim.

Enhanced Second Chance

● Like the regular one (clock algorithm) but we also look
at the dirty bit.

● Like before we make an initial selection FIFO style.
– If both the reference and dirty bits are clear we have a victim
– Otherwise we clear the reference bit and find next candidate

victim.
– If both bits are set in all pages we go back to the first

candidate victim.

● This may need several passes over the page table.

Page Buffering

● Most systems need to maintain a set of free frames.
– Allows a new page to be brought immediately
– The free pages can be just the “clean” pages in the

system
– If we put a page on the death row and it is referenced

before paged out, we can restore it immediately without
any I/O

● This scheme can be used in systems without
hardware support for reference bit

Applications with special needs

● Databases typically do their own paging
– Very often they scan a huge file bringing in a page

to use it only once.

● In most other applications if a page was used
once, it will be used again soon.

● Databases often handle their filesystem
themselves. The OS makes available a raw
disk.

Frame Allocation

● Every process needs a minimum number of
frames to work efficiently
– If it has fewer than that it will have too many page

faults
– If it has more it wastes resources

● This number varies from process to process and
from time to time for the same process

● The total number of frames cannot exceed the
size of the main memory

Equal and Proportional Allocation

● Both very simple but almost useless
● Do not take into account the needs of the

process
– A process with large address space may use a tiny

portion of it and the opposite

Global vs Local Allocation

● In global schemes any page in the system can be a
victim
– Allows balancing of resources
– Can take into account priorities
– Shared pages are a non issue

● In local schemes only a page that belongs to the
process that raised the page fault can be a victim
– Can guarantee the minimum number of frames
– The page-fault rate does not depend (much) on the load of

the system

Non-uniform Memory Access

● In NUMA systems every CPU has its own local RAM.
● All the CPUs talk to each other through a common bus.
● Accessing local memory is faster than non-local
● The memory management subsystem has to decide

not only how many pages to allocate but where.
● Linux keeps threads from migrating to different NUMA

nodes and keeps one free-frame list per node.
● Similar to Solaris.

Thrashing

● If the number of processes in a system is so
high that there are not enough pages to satisfy
the minimum requirement, the page faults
increase
– The fault rate can increase for other reasons too

(change of locality). It is hard to detect it.

● Often the situation gets worse if the OS
misdiagnoses the situation as not having
enough processes.

Working Set Model

● We try to estimate the size of the working set of
frames that will allow the process to run efficiently.

● We define parameter Δ which is the width of the
working set window.
– Typical values for Δ are 5,000 or 10,000, 20,000
– The working set is the set of distinct pages we

referenced in the past Δ memory references

● We only care for the size of the working set

Working Set Model

● We do not need much in terms of hardware support to
approximate WSM

● At fixed intervals Δ we count the number of pages that
have been referenced and clear the bits.

● This is a bit crude, so we use one or more history bits
(copy and clear the reference bit onto the history bit) and
copy and clear more frequently.

● So if a page fault occurs and we need to check if the
number of frames we have is enough we count the
number of pages that were referenced

Memory Mapped Files

● Every frame in the system has space on the
disk (the swap space)

● We can copy a file (or part of it) into the
memory.
– This memory is not mapped on the swap space, but

on the original file

● This can have many uses

Uses of Memory Mapped Files

● Easy programming: access files like arrays
– No need to seek, read, seek again, etc

● Save disk space (if we read the file in the usual way, we
will allocate swap space)

● Two processes can share this memory space if they can
share the file.

● The file could be a device
– Web cameras can work this way to minimize the number of

times an image is copied or minimize the number of system
calls needed to read an image.

Kernel Memory

● Kernel memory is often allocated from a
different pool of free frames.

● There a few reasons for this:
– Kernel data structures have varying sizes and often

much longer life span.
– They may not be subjected to the page system.
– May need to be in contiguous physical space to

interact with devices.

Kernel Memory Allocation

● Buddy system:
– Only allocate memory in power of two chunks.
– If we need less than half of the smallest chunk, we

split it in two buddies.
– If we free a chunk, and its buddy is also free, we

coalesce them.
– Has a rather big waste to internal fragmentation.

Kernel Memory Allocation

● Slab Allocation
– A slab is a set of one or more physically contiguous

pages
– A cache is one or more slabs.
– There is a single cache for each kind (size) kernel data

structure
● One cache for PCBs, one for open file records, one for system

wide semaphores, etc

● Easy to allocate each size structure and free it
without internal fragmentation.

Prepaging

● System tries to guess which pages will be
needed next.

● Easy if we swap out a whole process (then
bring back the pages that we swapped out)

● Not easy in general.
● Need to check the cost of prepaging as

compared to the savings/speed up we achieve.

Page Size

● Small pages allow smaller internal fragmentation
and better approximation of locality

● Large pages decrease I/O per byte brought in
– Unless of course we bring in things that we do not need

● TLB reach is increased with larger page size
– The bigger the TLB reach the higher the TLB hit ratio

● Large pages need less space for page tables

TLB Reach

● The other way to increase TLB reach is to
increase the number of entries
– This is obvious but costly.

● Or provide multiple page sizes
● Or take advantage of the contiguous pages:

– It is rather common that a large sequence of
contiguous pages maps to contiguous frames

– These pages can be made to map to a single TLB
entry (ARMv8)

I/O interlocking and Page Locking

● During I/O a page designated as an I/O buffer
cannot be swapped out.

● There are two ways to enforce this:
– Always do I/O to and from kernel memory
– Allow pages to be locked in memory using a lock bit

● A lock bit is needed to lock some kernel pages in.
● Or lock database managed pages.
● Or keep new pages from being swapped out before they

are used even once

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

