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Need for Virtual Memory

● Most Important: sounds good!
● We can run many huge programs on systems 

with little memory (unusual on modern systems)
● We can avoid loading all the program if we 

need to use a small part
● We do not need to load the whole program to 

start execution and show the first response to 
the user.



  

Demand Paging 

● In virtual memory systems we do not need to 
have every page available in the physical 
memory
– The page table has a valid bit. If it is false the page 

is missing

● When we try to access a page that is missing 
because it is on the disk, we generate a page 
fault
– The end result is to get the page we want



  

Page Faults

● What happens if a process tries to access a page that 
is not in the memory?
– An interrupt is raised
– System checks if it is really a segmentation violation 

(terminate?) or a simply a page fault
– If a page fault, we find a free frame (or a victim and grab it)
– Schedule a disk operation to bring it in, block the process, 

and let the scheduler take over.
– When the page arrives, the process is put back on the 

ready queue with its state restored.



  

Two Issues with Page Faults

● How do we restart an instruction interrupted by 
a page fault.
– We deal briefly with this.

● How do we select a victim so that
– We minimize the number of page faults
– Increase efficiency



  

Locality of reference

● Most real world programs at any time use a few 
pages only.
– If only we knew which, we could keep the program 

optimally satisfied

● This is a common theme in cache memories, 
TLBs, etc that we exploit.



  

Hardware Support Needed

● Page system, with valid bit or equivalent
● Ability to restart after an interrupt as if nothing 

happened
● Swap space on a device like disk.



  

Restarting an Interrupted Instruction

● Most asynchronous interrupts can be serviced 
at the boundaries of instructions
– That’s easy.

● A page fault happens in the middle of an 
instruction. We cannot wait till the end of the 
instruction
– This keeps computer architects safely employed

● We let computer architects solve this problem.



  

Restarting an Interrupted Instruction

● Some instructions are easy to restart
– Like: store reg. R3 to M[R4]

● Others are impossible:
– Copy a long array to another array

● Good luck if they overlap.

● Others are a bit tricky
– The instruction refers to two addresses on two different pages 

and referencing the one causes the other to be kicked out

● Most such instructions have disappeared from modern 
ISAs



  

Free-Frame List

● Usually systems keep a list of unused frames
● When a page fault occurs the system wastes no 

time looking for a victim.
● The system should make sure the page is 

zeroed before given to a process (security!)
● Occasionally the system searches for rarely 

used pages and reclaims their frames.



  

Performance

● Disk access is around a few thousand times 
slower than main memory access

● So if p is the probability of a memory reference 
to result in a page fault, t is the time it takes for a 
main memory access and T is the time to swap 
in a page
– t_eff = (1-p)*t + p*T

● Probability p (aka page-fault rate) should be tiny  



  

Copy-on-Write

● When we fork we create two identical processes.
– If a huge process wants to create a little short-lived utility 

process it has to make a copy of itself! And then discard this 
copy almost immediately with exec().

● There is a little trick to avoid all this waste
– Copy only the page tables and mark them copy-on-write.

● When a process writes anywhere on its address space it 
causes a new copy of that page to be created.

● There is a video regarding a bug with the copy-on-write: 
https://www.youtube.com/watch?v=CQcgz43MEZg 



  

Page replacement

● Usually we allocate fewer frames to each process and not 
the whole address space.

● This allows more processes to be resident and ready to run
● A typical process needs a certain number of frames to run 

efficiently
● We have to optimize the whole page replacement process

– If we split the frames among too many processes, none of them 
will have enough to run efficiently with few page faults

– If we split them among too few, the probability that all of them are 
doing I/O or paging at the same time is large.



  

The Cost

● The cost of a page fault can be broken into four 
main components
– Cost of servicing the interrupt
– Cost of saving the victim
– Cost of reading the new page
– Cost of restarting the process

● The first and the last are usually much smaller if 
we do not get too ambitious.



  

Minimizing the cost

● The cost of swapping in a frame depends on the 
disk, the bus, etc.

● The cost of writing back a victim on the same things
– But we do not always need to write it back
– We keep a “dirty” bit on the page table to indicate if a 

page needs writing back
– We prefer to swap a “clean” page out

● Occasionally we write back pages to “clean” them.



  

Reducing the Frequency

● We would like to reduce the page-fault rate
● If every process has the number of pages it 

needs it will create few page-faults
● The problem is we do not know how many 

these are
● And if we avoid paging out pages that will be 

needed soon, we further decrease page-faults.



  

Reference Strings

● Assume that we know how a process 
references pages.
– We can emulate a program and record that info.

● We want to try a few algorithms and see how 
they behave



  

FIFO

● Replace the oldest page first
● Simple, and needs minimal hardware support
● We can emulate it with a random string like

– 1,2,3,4,1,2,5,1,2,3,4,5

● And assume that we have either 2, 3, 4 or 5 
frames available

● It exhibits Belady’s Anomaly



  

Optimal Page Replacement

● We hire a fortune teller or palm reader to tell us 
which page is going to be needed further into 
the future

● Works best in Harry Potter situations.
● But it is used to see how good is a new 

algorithm
– If it is close to optimal, great!



  

LRU

● Like SJF we use the past as a guide to the 
future

● Least Recently Used is a good approximation to 
the optimal algorithm (in real life)

● It is hard to implement in an exact way
● We will talk about several approximations.



  

LRU Implementations

● Counters:
– Increment the counter at every memory access
– Every time a page is referenced we copy the counter to the 

page table entry for this page
– The counter acts as a clock. Should be able to handle 

overflow.

● Stack:
– Have all the pages in a linked list.
– Every time we reference a page we move the page to the 

head of the list



  

LRU Implementations

● Both methods require constant updates to the 
memory

● Both methods require extra memory
● Both methods try to find an exact solution to an 

approximation
– Remember: LRU is a real world approximation of 

the Optimal method.



  

Reference Bit

● We have a reference bit for every page in the 
page table (right next to the valid bit)

● If the reference bit is true when we reference a 
page we continue as usual

● If it is false, we set it to true.
● Periodically we clear all the reference bits
● If the bit is on it means that the page was 

referenced at least once since the last purge.



  

Additional Reference bits

● A single bit is kind of crude.
– Immediately after a purge we do not know anything 

about which pages are in use

● Have a second bit
– Periodically, copy the (first) reference bit onto the 

(second) history bit and clear the first.
– This allows us to distinguish between recently and 

very recently referenced pages

● Can have more than two history bits



  

Second Chance

● AKA clock algorithm
● It is essentially a FIFO replacement algorithm.
● If we get a page fault we select a victim as in 

the usual FIFO page replacement algorithm
– If the victim has the reference bit set, we clear it 

and find another victim
– If the reference bit is clear, we have a victim.



  

Enhanced Second Chance

● Like the regular one (clock algorithm) but we also look 
at the dirty bit.

● Like before we make an initial selection FIFO style.
– If both the reference and dirty bits are clear we have a victim
– Otherwise we clear the reference bit and find next candidate 

victim.
– If both bits are set in all pages we go back to the first 

candidate victim.

● This may need several passes over the page table.



  

Page Buffering

● Most systems need to maintain a set of free frames.
– Allows a new page to be brought immediately
– The free pages can be just the “clean” pages in the 

system
– If we put a page on the death row and it is referenced 

before paged out, we can restore it immediately without 
any I/O

● This scheme can be used in systems without 
hardware support for reference bit



  

Applications with special needs

● Databases typically do their own paging
– Very often they scan a huge file bringing in a page 

to use it only once.

● In most other applications if a page was used 
once, it will be used again soon.

● Databases often handle their filesystem 
themselves. The OS makes available a raw 
disk.



  

Frame Allocation

● Every process needs a minimum number of 
frames to work efficiently
– If it has fewer than that it will have too many page 

faults
– If it has more it wastes resources

● This number varies from process to process and 
from time to time for the same process

● The total number of frames cannot exceed the 
size of the main memory



  

Equal and Proportional Allocation

● Both very simple but almost useless
● Do not take into account the needs of the 

process
– A process with large address space may use a tiny 

portion of it and the opposite



  

Global vs Local Allocation

● In global schemes any page in the system can be a 
victim
– Allows balancing of resources
– Can take into account priorities
– Shared pages are a non issue

● In local schemes only a page that belongs to the 
process that raised the page fault can be a victim
– Can guarantee the minimum number of frames
– The page-fault rate does not depend (much) on the load of 

the system



  

Non-uniform Memory Access

● In NUMA systems every CPU has its own local RAM.
● All the CPUs talk to each other through a common bus.
● Accessing local memory is faster than non-local
● The memory management subsystem has to decide 

not only how many pages to allocate but where.
● Linux keeps threads from migrating to different NUMA 

nodes and keeps one free-frame list per node.
● Similar to Solaris.



  

Thrashing

● If the number of processes in a system is so 
high that there are not enough pages to satisfy 
the minimum requirement, the page faults 
increase
– The fault rate can increase for other reasons too 

(change of locality). It is hard to detect it.

● Often the situation gets worse if the OS 
misdiagnoses the situation as not having 
enough processes.



  

Working Set Model

● We try to estimate the size of the working set of 
frames that will allow the process to run efficiently.

● We define parameter Δ which is the width of the 
working set window.
– Typical values for Δ are 5,000 or 10,000, 20,000
– The working set is the set of distinct pages we 

referenced in the past Δ memory  references

● We only care for the size of the working set



  

Working Set Model

● We do not need much in terms of hardware support to 
approximate WSM

● At fixed intervals Δ we count the number of pages that 
have been referenced and clear the bits.

● This is a bit crude, so we use one or more history bits 
(copy and clear the reference bit onto the history bit) and 
copy and clear more frequently.

● So if a page fault occurs and we need to check if the 
number of frames we have is enough we count the 
number of pages that were referenced



  

Memory Mapped Files

● Every frame in the system has space on the 
disk (the swap space)

● We can copy a file (or part of it) into the 
memory.
– This memory is not mapped on the swap space, but 

on the original file

● This can have many uses



  

Uses of Memory Mapped Files

● Easy programming: access files like arrays
– No need to seek, read, seek again, etc

● Save disk space (if we read the file in the usual way, we 
will allocate swap space)

● Two processes can share this memory space if they can 
share the file.

● The file could be a device
– Web cameras can work this way to minimize the number of 

times an image is copied or minimize the number of system 
calls needed to read an image.



  

Kernel Memory

● Kernel memory is often allocated from a 
different pool of free frames.

● There a few reasons for this:
– Kernel data structures have varying sizes and often 

much longer life span.
– They may not be subjected to the page system.
– May need to be in contiguous physical space to 

interact with devices. 



  

Kernel Memory Allocation

● Buddy system:
– Only allocate memory in power of two chunks.
– If we need less than half of the smallest chunk, we 

split it in two buddies.
– If we free a chunk, and its buddy is also free, we 

coalesce them.
– Has a rather big waste to internal fragmentation.



  

Kernel Memory Allocation

● Slab Allocation
– A slab is a set of one or more physically contiguous 

pages
– A cache is one or more slabs.
– There is a single cache for each kind (size) kernel data 

structure
● One cache for PCBs, one for open file records, one for system 

wide semaphores, etc

● Easy to allocate each size structure and free it 
without internal fragmentation.



  

Prepaging

● System tries to guess which pages will be 
needed next.

● Easy if we swap out a whole process (then 
bring back the pages that we swapped out)

● Not easy in general.
● Need to check the cost of prepaging as 

compared to the savings/speed up we achieve.



  

Page Size

● Small pages allow smaller internal fragmentation 
and better approximation of locality

● Large pages decrease I/O per byte brought in
– Unless of course we bring in things that we do not need

● TLB reach is increased with larger page size
– The bigger the TLB reach the higher the TLB hit ratio

● Large pages need less space for page tables



  

TLB Reach

● The other way to increase TLB reach is to 
increase the number of entries
– This is obvious but costly.

● Or provide multiple page sizes
● Or take advantage of the contiguous pages:

– It is rather common that a large sequence of 
contiguous pages maps to contiguous frames

– These pages can be made to map to a single TLB 
entry (ARMv8)



  

I/O interlocking and Page Locking

● During I/O a page designated as an I/O buffer 
cannot be swapped out.

● There are two ways to enforce this:
– Always do I/O to and from kernel memory
– Allow pages to be locked in memory using a lock bit

● A lock bit is needed to lock some kernel pages in.
● Or lock database managed pages.
● Or keep new pages from being swapped out before they 

are used even once
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