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Definition

● A process is a program in execution.
● There can be more than one processes running on 

the same system (if there are enough 
cores/memory/load capacity)
– Even if there is a single core on the system, they share 

it by taking turns.

● There can be more than one processes that 
execute the same program.

● (Sometimes processes are called jobs or tasks)



  

Process Relationships

● Processes can spawn other processes
– The one will be called parent and the other child

● The grand-grand-...-grandmother of all is called init (in Linux and 
Unix, or systemd on some Linux versions)
– Execute ps -1

● Before a process dies it kills its children
– Unless the children take precautions (see sigaction(2))
– Children that kill their parents become deamons and are adopted by init.

● When a child process dies tells its parent and becomes zombie. 
Only after the parent acknowledges the death the child is reaped 
(dead for good) (see wait(2))



  

Process in Memory

● Each process has its own chunks of memory
● Each chunk can be mapped to the virtual memory or to a 

file, shared with other processes, etc
● There are many magic tricks (Ch. 9&10) that allow this and 

many other amazing feats.
● Every process has usually the following:

– Text: the executable program
– Data: the static data for the program
– Heap: dynamic data
– Stack: the program stack



  

Process Memory Layout

● Simplified model of memory
● We do not consider

– Multiple threads
– Kernel memory
– Memory mappings
– Unmapped memory

● Address space may be much (MUCH) bigger 
than physical memory
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Process State

● A process can be one of the following states
– New.
– Running.
– Waiting.
– Ready.
– Terminated (zombie).

● One process can be in running state per core
– Or two in a two way hyperthreaded cores.

● To see the list of processes do: ps aux
– Or cd /proc
– Filesystem /proc is a virtual (fake) filesystem that instead of files has kernel 

datastructures.
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Process Control Block

● PCB contain all the info the kernel needs to manage the process
● It should contain:

– Process ID
– Program counter
– CPU registers
– Scheduling info
– Memory management info
– Accounting
– I/O info

● On a linux box, most of this info is in /proc (the fake filesystem 
from the previous slide)



  

Process Scheduling

● There is a component of the OS that does process 
scheduling

● Maintains a set of queues and lists
– Job list
– Ready queue
– One device queue per device (some systems)

● The scheduler tries to optimize the performance or safety
– Processes may be kicked out of the CPU early
– Scheduling may be prioritized.



  

Context Switching and Swapping

● Context switching is when a process goes in or 
out of the READY queue
– Save/restore registers
– Save/restore memory information
– Update book-keeping information

● Swapping is when a process is moved to the 
disk to decongest the system



  

Process Creation

● Any process can create another process
– Sometimes is called spawning
– In Linux/Unix it is called forking (similar but not the same)

● A process needs resources to run. Among them:
– A terminal/window/whatever
– Info from the parent
– Memory space
– Executable program

● Spawning a process in one step is tricky.



  

Options for Child

● In terms of execution
– Child executes concurrently with parent
– Parent waits until child is dead

● In terms of memory
– Child gets a duplicate of the parent memory
– Child shares parent memory
– Child gets new memory



  

Fork

● In Unix/Linux fork(2) is the main way to create process
– See fork -s 2 fork

● Fork creates a new process with:
– A copy of parent's memory (can be faked)
– All open files (unless we asked not to)

● The only difference is that fork returns once in the parent 
with the PID of the child and once in the child with PID=0 
(the child can easily find the PID of its parent)

● After forking the child usually replaces its program with 
another one (by executing execlp or something similar)



  

Clone

● Linux can also clone
● With clone we can select what parts are shared 

and what parts are replicated
● Main use is for threads (next chapter)
● It is a very simple and very customizable 

mechanism



  

Fork



  

CreateProcess

● Windows uses a spawn-type mechanism
– Needs ten parameters
– All options are readily available
– Protects programmer from shooting his own foot.
– Not as flexible as fork/exec



  

Process Termination

● Before a process dies it kills its children
– Unless the children have chosen to (and are able) ignore the kill 

signal.
– This allows all the processes to terminate after the user logs out.

● If the children survive the kill signal of a dying parent they 
are reparented to init.

● If the children die and their parents do not wait(2) they 
become zombies
– This way their parent can get some last info from them (PID and 

status)



  

Interprocess Communication

● We need to have mechanisms for processes to 
communicate
– Information Sharing
– Computation speedup
– Modularity
– Convenience

● Two main mechanisms
– Shared memory
– Message passing



  

Shared Memory

● The two (or more) processes have to have a 
region of memory they share (one of the magic 
tricks of modern memory management)

● Then one process can write and the other read
● Sounds much easier than it is!



  

Producer-Consumer Problem

● The process that writes is the producer and the process 
that reads is the consumer

● Normally when we read something it is gone 
(consumed)

● We call the region that is set aside for this “buffer”
● Questions:

– How does the consumer know there is something to consume
– How does the producer know there is space left
– How do they avoid creating a mess



  

Producer-Consumer

while (true)
  {
    while (in==out)
     ; /*do nothing*/

    food = buffer[out];
    out = (out+1)%BUFFER_SIZE;
    /* consume food */
  }

while (true)
  {
    /* produce something */
    while (((in+1)%BUFFER_SIZE)==out)
     ; /*do nothing*/

    buffer[in] = something;
    in = (in+1)%BUFFER_SIZE;
  }



  

Message-Passing

● Message passing can work even if the system is 
distributed (and thus there is no shared memory)

● We need (mainly) two operations: send and 
receive

● The operations can be
– Direct or indirect
– Synchronous or asynchronous
– Zero, finite or infinite buffer size



  

Direct Messaging

● Process P sends process Q a message
– send(Q, message2Q)

● Process Q receives the message
– recieve(P, messagefromP);

● What could be simpler?
– There is always one direct link between every process 

pair
– Every link involves exactly two processes
– They need to know each other's PID.



  

Indirect Messaging

● We have mailboxes
● In this scheme:

– A link is established between two processes if they use the same 
mailbox

– More than two processes can share a link
– More than one link can be between two processes

● What happens if three processes share a mailbox:
– Prohibit it
– One of them gets the message arbitrarily
– Allow only one of them to execute receive()



  

Synchronization

● What happens when we send and the receiver is still 
busy with something else
– Blocking send
– Non blocking send

● Same for receiving
– Blocking receive
– Non blocking receive

● If both send and receive are blocking the two 
processes can have a rendezvous



  

Buffering

● We can have three kinds:
– Zero capacity (sender blocks or fails)
– Bounded capacity
– Infinite capacity



  

POSIX InterProcess Communication

● POSIX IPC uses memmory mapped files to share information.
● It may not involve actual files on a disk, but the interface is 

identical to the file interface
● Typically

– fd = shm_open(“/minas”,O_CREAT|O_RDRW, 0666);
– Which is followed usually by
– ftruncate(fd, sh_size);
– shm_ptr = mmap(NULL,sh_size, PROT_READ|PROT_WRITE, 
MAP_SHARED, fd, 0);

– After this pointer shm_ptr points to a block of size sh_size which 
can be shared.



  

Sockets

● Sockets are end points of communication.
● A socket looks like (almost)

– news.google.ca:80

● Some services are well known
– FTP: 21, SSH:22, telnet:23, HTTP:80

● All ports below 1024 are reserved for well known
● Are of two kinds: TCP and UDP



  

RPC

● Remote Procedure Calls
● When we call a procedure we

– Specify some code to be executed (function or procedure)
– Give this code some data (parameters)
– Wait until the code finishes
– Get the results

● When we send a message we do more or less the same 
things.

● Message passing can be used for remote procedure calls



  

RPC

● To call a remote procedure on some server 
259.259.300.300 (yeah, sure) we have to
– Find the port of the procedure (like a TCP port)
– Package (“marshal”) the data in a specific format 

(XDR is a classic)
– Send the message
– Block
– When response arrives, unpack the data.



  

Pipes

● Early IPC mechanism
● Can be thought of as sockets, sometimes local ones
● Can be uni- or bi-directional, depending on the 

system and type.
● Can be created or inherited
● There are two types

– Ordinary or anonymous
– Named or FIFO



  

Unix ordinary Pipes

● Can be only inherited
● Are unidirectional and local
● Are extensively used on Unix/Linux

– Part of the philosophy and culture



  

Unix Example

Bugs:
Did we check write?
Did we check read?

char wmsg[BUFSZ] = “Hello”;
char rmsg[BUFSZ];
int fd[2];
pid_t pid;

if (pipe(fd)<0) {error...}
pid = fork();
if (pid<0) {error...}
if (pid>0)
{
  close(fd[0]);
  write(fd[1], wmsg, strlen(wmsg)+1);
  close(fd[1]);
}
else
{
  close(fd[1]);
  read(fd[0], rmsg, BUFSZ);
  printf(“Child: %s\n”,rmsg);
  close(fd[0]);
}



  

Named Pipes on Unix

● Also called FIFOs
● Look like regular files
● Permissions like files
● No need to share a parent to share a pipe
● Must be on the same machine
● Two FIFOs are need for bidirectional communication

● Can be created with mkfifo()

● Std functions like open, close, read, write can be used 
on them.



  

Named pipes on Windows

● Allow bidirectional communication through a single 
pipe

● Allow byte oriented or message oriented 
communication

● The end points can be on a different machine

● Can be created with CreateNamedPipe()

● Std functions like ReadFile() and 
WriteFile() can be used on them



  

Signals in Unix/Linux

● Allow a process to signal another
– There are restrictions to avoid sending malicious or annoying 

signals

● They are meant to send asynchronous signals
– But they can be used for synchronous signals as well

● They are built in the system. Much of the functionality of 
the OS is facilitated by signals
– SIGINT (interrupt), SIGKILL, SIGALRM, SIGPIPE, SIGCHLD, 

SIGHUP, SIGSEGV, SIGFPE, etc.

● Main documentation is in signal(7)



  

Signal Dispositions

● The term means what to do when receiving a signal
● The possible dispositions are:

– Terminate (possibly with a core dump)
– Ignore
– Block (the signal is delivered when unblocked)
– Stop
– Continue (if stopped)
– Catch (with a programmer supplied function)

● All signals come with a default disposition, which in most cases 
can be modified
– With the exception of SIGKILL (aka signal 9) and SIGSTOP



  

Signal Dispositions

● Every process has its own set of dispositions (one for each 
signal)

● It can be changed with sigaction(2)
– Also with signal(2) but this should be avoided since it has portability 

issues

● If we want to block a signal we use sigprocmask(2) or sigvec(3) 
to change the set (mask) of blocked signals

● If we want to send signals synchronously (suspend until a signal 
is received) we use sigsuspend.
– If we want to receive SIGUSR1 synchronously we block it with sigvec(3), 

then we sigsuspend(2) with a mask that does not block SIGUSR1.
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