

Operating Systems

Processes
Based on Ch. 3 of

OS Concepts by SGG

Definition

● A process is a program in execution.
● There can be more than one processes running on

the same system (if there are enough
cores/memory/load capacity)
– Even if there is a single core on the system, they share

it by taking turns.

● There can be more than one processes that
execute the same program.

● (Sometimes processes are called jobs or tasks)

Process Relationships

● Processes can spawn other processes
– The one will be called parent and the other child

● The grand-grand-...-grandmother of all is called init (in Linux and
Unix, or systemd on some Linux versions)
– Execute ps -1

● Before a process dies it kills its children
– Unless the children take precautions (see sigaction(2))
– Children that kill their parents become deamons and are adopted by init.

● When a child process dies tells its parent and becomes zombie.
Only after the parent acknowledges the death the child is reaped
(dead for good) (see wait(2))

Process in Memory

● Each process has its own chunks of memory
● Each chunk can be mapped to the virtual memory or to a

file, shared with other processes, etc
● There are many magic tricks (Ch. 9&10) that allow this and

many other amazing feats.
● Every process has usually the following:

– Text: the executable program
– Data: the static data for the program
– Heap: dynamic data
– Stack: the program stack

Process Memory Layout

● Simplified model of memory
● We do not consider

– Multiple threads
– Kernel memory
– Memory mappings
– Unmapped memory

● Address space may be much (MUCH) bigger
than physical memory

Heap

text

Stack

Data

Process State

● A process can be one of the following states
– New.
– Running.
– Waiting.
– Ready.
– Terminated (zombie).

● One process can be in running state per core
– Or two in a two way hyperthreaded cores.

● To see the list of processes do: ps aux
– Or cd /proc
– Filesystem /proc is a virtual (fake) filesystem that instead of files has kernel

datastructures.

Process state

Running

Ready Terminated

New

Waiting

admission

I/O request

I/O completion

Interrupt

Dispatch

Exit

Process Control Block

● PCB contain all the info the kernel needs to manage the process
● It should contain:

– Process ID
– Program counter
– CPU registers
– Scheduling info
– Memory management info
– Accounting
– I/O info

● On a linux box, most of this info is in /proc (the fake filesystem
from the previous slide)

Process Scheduling

● There is a component of the OS that does process
scheduling

● Maintains a set of queues and lists
– Job list
– Ready queue
– One device queue per device (some systems)

● The scheduler tries to optimize the performance or safety
– Processes may be kicked out of the CPU early
– Scheduling may be prioritized.

Context Switching and Swapping

● Context switching is when a process goes in or
out of the READY queue
– Save/restore registers
– Save/restore memory information
– Update book-keeping information

● Swapping is when a process is moved to the
disk to decongest the system

Process Creation

● Any process can create another process
– Sometimes is called spawning
– In Linux/Unix it is called forking (similar but not the same)

● A process needs resources to run. Among them:
– A terminal/window/whatever
– Info from the parent
– Memory space
– Executable program

● Spawning a process in one step is tricky.

Options for Child

● In terms of execution
– Child executes concurrently with parent
– Parent waits until child is dead

● In terms of memory
– Child gets a duplicate of the parent memory
– Child shares parent memory
– Child gets new memory

Fork

● In Unix/Linux fork(2) is the main way to create process
– See fork -s 2 fork

● Fork creates a new process with:
– A copy of parent's memory (can be faked)
– All open files (unless we asked not to)

● The only difference is that fork returns once in the parent
with the PID of the child and once in the child with PID=0
(the child can easily find the PID of its parent)

● After forking the child usually replaces its program with
another one (by executing execlp or something similar)

Clone

● Linux can also clone
● With clone we can select what parts are shared

and what parts are replicated
● Main use is for threads (next chapter)
● It is a very simple and very customizable

mechanism

Fork

CreateProcess

● Windows uses a spawn-type mechanism
– Needs ten parameters
– All options are readily available
– Protects programmer from shooting his own foot.
– Not as flexible as fork/exec

Process Termination

● Before a process dies it kills its children
– Unless the children have chosen to (and are able) ignore the kill

signal.
– This allows all the processes to terminate after the user logs out.

● If the children survive the kill signal of a dying parent they
are reparented to init.

● If the children die and their parents do not wait(2) they
become zombies
– This way their parent can get some last info from them (PID and

status)

Interprocess Communication

● We need to have mechanisms for processes to
communicate
– Information Sharing
– Computation speedup
– Modularity
– Convenience

● Two main mechanisms
– Shared memory
– Message passing

Shared Memory

● The two (or more) processes have to have a
region of memory they share (one of the magic
tricks of modern memory management)

● Then one process can write and the other read
● Sounds much easier than it is!

Producer-Consumer Problem

● The process that writes is the producer and the process
that reads is the consumer

● Normally when we read something it is gone
(consumed)

● We call the region that is set aside for this “buffer”
● Questions:

– How does the consumer know there is something to consume
– How does the producer know there is space left
– How do they avoid creating a mess

Producer-Consumer

while (true)
 {
 while (in==out)
 ; /*do nothing*/

 food = buffer[out];
 out = (out+1)%BUFFER_SIZE;
 /* consume food */
 }

while (true)
 {
 /* produce something */
 while (((in+1)%BUFFER_SIZE)==out)
 ; /*do nothing*/

 buffer[in] = something;
 in = (in+1)%BUFFER_SIZE;
 }

Message-Passing

● Message passing can work even if the system is
distributed (and thus there is no shared memory)

● We need (mainly) two operations: send and
receive

● The operations can be
– Direct or indirect
– Synchronous or asynchronous
– Zero, finite or infinite buffer size

Direct Messaging

● Process P sends process Q a message
– send(Q, message2Q)

● Process Q receives the message
– recieve(P, messagefromP);

● What could be simpler?
– There is always one direct link between every process

pair
– Every link involves exactly two processes
– They need to know each other's PID.

Indirect Messaging

● We have mailboxes
● In this scheme:

– A link is established between two processes if they use the same
mailbox

– More than two processes can share a link
– More than one link can be between two processes

● What happens if three processes share a mailbox:
– Prohibit it
– One of them gets the message arbitrarily
– Allow only one of them to execute receive()

Synchronization

● What happens when we send and the receiver is still
busy with something else
– Blocking send
– Non blocking send

● Same for receiving
– Blocking receive
– Non blocking receive

● If both send and receive are blocking the two
processes can have a rendezvous

Buffering

● We can have three kinds:
– Zero capacity (sender blocks or fails)
– Bounded capacity
– Infinite capacity

POSIX InterProcess Communication

● POSIX IPC uses memmory mapped files to share information.
● It may not involve actual files on a disk, but the interface is

identical to the file interface
● Typically

– fd = shm_open(“/minas”,O_CREAT|O_RDRW, 0666);
– Which is followed usually by
– ftruncate(fd, sh_size);
– shm_ptr = mmap(NULL,sh_size, PROT_READ|PROT_WRITE,
MAP_SHARED, fd, 0);

– After this pointer shm_ptr points to a block of size sh_size which
can be shared.

Sockets

● Sockets are end points of communication.
● A socket looks like (almost)

– news.google.ca:80

● Some services are well known
– FTP: 21, SSH:22, telnet:23, HTTP:80

● All ports below 1024 are reserved for well known
● Are of two kinds: TCP and UDP

RPC

● Remote Procedure Calls
● When we call a procedure we

– Specify some code to be executed (function or procedure)
– Give this code some data (parameters)
– Wait until the code finishes
– Get the results

● When we send a message we do more or less the same
things.

● Message passing can be used for remote procedure calls

RPC

● To call a remote procedure on some server
259.259.300.300 (yeah, sure) we have to
– Find the port of the procedure (like a TCP port)
– Package (“marshal”) the data in a specific format

(XDR is a classic)
– Send the message
– Block
– When response arrives, unpack the data.

Pipes

● Early IPC mechanism
● Can be thought of as sockets, sometimes local ones
● Can be uni- or bi-directional, depending on the

system and type.
● Can be created or inherited
● There are two types

– Ordinary or anonymous
– Named or FIFO

Unix ordinary Pipes

● Can be only inherited
● Are unidirectional and local
● Are extensively used on Unix/Linux

– Part of the philosophy and culture

Unix Example

Bugs:
Did we check write?
Did we check read?

char wmsg[BUFSZ] = “Hello”;
char rmsg[BUFSZ];
int fd[2];
pid_t pid;

if (pipe(fd)<0) {error...}
pid = fork();
if (pid<0) {error...}
if (pid>0)
{
 close(fd[0]);
 write(fd[1], wmsg, strlen(wmsg)+1);
 close(fd[1]);
}
else
{
 close(fd[1]);
 read(fd[0], rmsg, BUFSZ);
 printf(“Child: %s\n”,rmsg);
 close(fd[0]);
}

Named Pipes on Unix

● Also called FIFOs
● Look like regular files
● Permissions like files
● No need to share a parent to share a pipe
● Must be on the same machine
● Two FIFOs are need for bidirectional communication

● Can be created with mkfifo()

● Std functions like open, close, read, write can be used
on them.

Named pipes on Windows

● Allow bidirectional communication through a single
pipe

● Allow byte oriented or message oriented
communication

● The end points can be on a different machine

● Can be created with CreateNamedPipe()

● Std functions like ReadFile() and
WriteFile() can be used on them

Signals in Unix/Linux

● Allow a process to signal another
– There are restrictions to avoid sending malicious or annoying

signals

● They are meant to send asynchronous signals
– But they can be used for synchronous signals as well

● They are built in the system. Much of the functionality of
the OS is facilitated by signals
– SIGINT (interrupt), SIGKILL, SIGALRM, SIGPIPE, SIGCHLD,

SIGHUP, SIGSEGV, SIGFPE, etc.

● Main documentation is in signal(7)

Signal Dispositions

● The term means what to do when receiving a signal
● The possible dispositions are:

– Terminate (possibly with a core dump)
– Ignore
– Block (the signal is delivered when unblocked)
– Stop
– Continue (if stopped)
– Catch (with a programmer supplied function)

● All signals come with a default disposition, which in most cases
can be modified
– With the exception of SIGKILL (aka signal 9) and SIGSTOP

Signal Dispositions

● Every process has its own set of dispositions (one for each
signal)

● It can be changed with sigaction(2)
– Also with signal(2) but this should be avoided since it has portability

issues

● If we want to block a signal we use sigprocmask(2) or sigvec(3)
to change the set (mask) of blocked signals

● If we want to send signals synchronously (suspend until a signal
is received) we use sigsuspend.
– If we want to receive SIGUSR1 synchronously we block it with sigvec(3),

then we sigsuspend(2) with a mask that does not block SIGUSR1.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

