
  

Operating Systems

Main Memory
Based on Ch. 9 of

OS Concepts by SGG



  

Basic Hardware

● Memory holds the instructions (text), data, etc 
of a process.

● There can be many processes in the system all 
with their memory.

● A simple way to think of them is that they 
occupy consecutive areas in the memory

● We should also have some minimal protection.



  

Basic Hardware

Process 2

Operating System

Process 3

Process 1

Base+limitBase

CPU

Base

Base+limit

<>=



  

Address Binding

● The addresses inside an executable program are fixed in 
several steps
– Source code: symbolic (like variable i)

– Object code: relative to module
– Executable file: most of them are logical (or virtual) addresses, 

some of them to be determined
● Virtual address is what you get if you print a pointer as integer

– Running code: all of them logical (or virtual)

● Throughout the execution of a program on a modern 
computer the addresses are understood to be logical 
addresses.



  

Logical vs Physical

● All programmers write code as if their code is 
alone in the system
– Their address space starts at 0
– They are safe from interference from other programs
– They have no means to interfere with other 

programs’ address space

● This is not what really happens, this is what it 
appears to happen



  

Logical vs Physical

● The program emits reads and writes from and 
to the memory with logical addresses

● The MMU (Memory Management Unit) 
translates these to physical addresses

● The MMU can be a simple relocation register 
and an adder or a monster set of page tables



  

Relocation Register

CPU ADD

Relocation
Register



  

Dynamic Loading

● Programs can load (copy from disk into the 
memory) modules of a program as needed
– Old systems did it to save RAM
– Modern systems do it to speed up initialization

● They can unload them as well
● The linking has been done in advance



  

Dynamic linking and Shared 
Libraries

● The object files in a program are usually statically 
linked

● Most of the libraries are linked dynamically
– With a notable exception: the dynamic linker itself!

● Addresses are finally resolved during linking
● This allows the same library to be linked twice but 

loaded once
– If, for example, two programs make use of the same 

library.



  

Swapping

● When a system has many processes running, it may 
run out of memory

● Then a few processes are copied to the disk
– Tricky: how do you handle pending I/O

● Either wait until I/O is done
● Or let the I/O happen only between the device and the kernel 

memory

● Mobile systems usually do not swap
– But swap out all processes instead of terminating them to 

make restarting easier.



  

Memory Allocation: Contiguous

● The simplest way to allocate memory
● Easy to do memory protection
● When we deallocate memory, we can re-use it

– If we are lucky the next request will exactly fill the 
hole left by the freed memory

● After many rounds of allocation and de-
allocation we are left with lots of little holes in 
between allocated memory.



  

Memory Allocation: Contiguous

● If we use variable size partitions we end up with up to 1/3 
of memory lost to little holes
– This is called external fragmentation

● Because the fragments are outside the allocated space

● We allocate memory space using some rule
– Best fit: Find the free chunk of memory closest in size
– First fit: find the first that fits
– Worst fit: fit it into the bigest to leave a usable leftover

● Best fit and first fit work the best. First fit is the cheaper of 
the two.



  

Segmentation (old fashioned)

● Programmers think of memory as text, data, 
heap, stack, libraries, etc

● It is natural to design a system that preserves 
this view

● We use variable size segments that can 
increase and shrink in size as needed



  

Segmentation Hardware

CPU s d

baselimit

>



  

Paging

● Like segmentation allows bits and pieces of the address 
space to be everywhere

● Pages are fixed size (kind-of)
● Avoids external fragmentation

– But has internal fragmentation (if page size is small, it is not a 
problem)

● The address space is cut into chunks called pages
● The main memory is cut into chunks called frames
● We can find the page size with

– getconf PAGESIZE



  

Paging

CPU f d

frame

p d



  

Hardware Support

● Looking up the page tables creates extra 
memory references

● Page tables become bigger, memory falling 
behind the CPU in performance, the delay 
becomes unacceptable.

● Time for some hardware acceleration



  

Hardware support

● Most processes read and write the same few pages 
for extended time

● We cache the page table entries of these pages into 
a fast associative memory

● It is called TLB. Looking up the TLB is part of the 
pipeline

● If the entry is not there we call it TLB Miss
● If it is there the extra cost of paging is (almost) zero.



  

TLB

● When we have a TLB miss we go to the real page 
table. This takes several cycles.

● When we get the needed page table entry we put it in 
the TLB
– This means we have to kick something out, like any cache

● At every context switch the TLB is fluched out to 
avoid confusion

● We can avoid this by using ASID (Address Space ID)



  

Miss Rate, Miss Penalty

● TLB misses are expensive
● Example: If the cost of a regular memory access 

is 1ns, and the cost of a miss is 20ns and the 
miss rate is 1%, what is the overall cost of 
accesssing the memory
– .99*1+.01*20 = 1.19

● The calculations are more complex because we 
have many other factors affecting the 
performance



  

Protection

● What happens if a user process tries to access 
an invalid part of the page table
– It will contain garbage...

● To avoid havoc we introduce one extra bit on 
each page table entry: the valid bit (or valid 
invalid)

● In smaller address spaces we could use a 
page-table-length-register



  

Shared pages

● Paged memory allows page sharing
● Very useful if several processes make use of the 

same library
– They do not load a copy each. They all share a single 

copy
– The code has to be re-entrant and position 

independent.

● Can be used as an interprocess communication 
mechanism



  

Page Table Structure

● In a 32 bit system of old
– Page size: 1K (10 bits)
– Page table size: 8-16MB
– Back then few computers had that much memory 

altogether!

● In a 64 bit system
– Page size: 4K (12 bits)
– Page table size: 2^52 (too big to say in decimal)



  

Page Table Structure

● Hierarchical paging
– For a 32 bit system

● 12 bit offset (4K page size)
● 1024 entry (10 bit) outer page table
● Several 1024 entry page tables
● Most of the page tables are not allocated

– For a 64 bit system
● We need about 7 layers of tables to keep the sizes under control.
● AMD-64 has 4 levels of page hierarchy but only 48-bit virtual 

address space



  

Page Table Structure

● Hierarchical paging (x86-64)

CPU

f d

frame

pdir dp3 p4p2



  

Page Table Structure

● Hierarchical paging (x86-64)

f d

frame

f

Valid-bit, Page Size, Dirty-bit, Ref-bit



  

Hierarchical page tables

● The x86-64 architecture supports 4KB (12 bit), 
2MB (21 bit) and 1GB (30 bit) page sizes.

● Every page table entry has a few extra bits 
(right next to the valid bit) that indicates the size 
of the page.
– 1GB pages need two extra memory accesses
– 2MB page need three extra memory accesses
– 4KB page need four extra memory accesses



  

Hashed Page Tables

● Instead of having a huge page table (or multi level tree) 
we use a hashing function and map the addresses to a 
smaller table.

● When there is a conflict we chain
● Every entry has three fields:

– Page, frame, next

● There are varieties that work better for clustered keys 
(most pages are clustered)
– A group of clustered pages can be represented by a single 

entry in the hash table.



  

Inverted Page Tables

● Every process is supposed to have a page table
● Most processes use a tiny part of their virtual address 

space
– Big waste

● The physical memory is of fixed size
● One idea is to index the table by the frame number
● When we get a request to find a frame, we scan the 

whole table
– That’s STUPID 



  

Inverted Page Tables

● Instead we use a technique for data storage and 
retrieval

● The best seems to be hashing. We have one hash 
table for the whole system.

● The difference now is that we have to keep an ASID 
to distinguish various address spaces

● We can reduce the size of the hash table by having 
one entry per group of contiguous pages.

● Sharing pages is tricky.



  

Inverted Page Tables

● Example: SPARC Solaris (by Oracle)
– Has two hash tables (user and kernel)
– Has a TSB (Translation Storage Buffer), besides the 

good old TLB.
● It is a bigger but slower TLB that resides in main memory.

– On a TLB miss, the TSB is searched.
– On a TSB miss the hash table is searched.



  

Swapping

● If we run out of memory we can swap processes out 
to the disk and give its pages to other processes.

● This is rarely needed anymore. A version of this is 
used for suspending the CPU (swap out everything)

● Most often we page out to the disk the pages that 
are not used as often
– More on this in the next chapter.
– Not used on SSDs.
– Mobile devices use a form of swapping.



  

IA-32 Paging

● Uses two level hierarchical page tables
– 10-10-12 bits

● If the valid bit is zero this may mean that the page 
table (or the page) has been paged out to the disk.

● Some OSes can use Page Address Extension
– 32 bit virtual address but much bigger physical address

● Similar to IA-32 but with 3 different page sizes, 
and four levels of hierarchical page tables.



  

ARM Paging system

● Has many versions. One of them is very similar 
to X86-64

● They love to use different names
– Granule size for the smallest page size
– Region size for other page sizes

● It uses two levels of TLB


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

