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Scheduling

● If we have more processes than cores we have to 
decide which ones run and which ones wait

● In other words we have to do scheduling
● We have to make sure that 

– The CPU and the rest of the system are used efficiently
– The we do not have starvation
– The users are satisfied
– Priorities are respected
– etc.



  

The life of a Process

● From a scheduler point of view, a process alternates 
between two states
– CPU burst
– I/O burst

● The CPU scheduler is sometimes referred to as 
short-term scheduler

● There are two kinds of schedulers
– Preemptive
– Non preemptive



  

The Life of a Scheduler

● The simplest would be to have a ready queue 
and any time it is activated it moves the running 
process to the end of some queue and moves 
the head of the ready queue to run on a CPU

● This would work but not very well
– For example: if there are 10 I/O-bound process 

waiting for a cpu-hog



  

When Scheduling Takes Place

● A scheduler may be activated in one of four 
situations
– 1. A process switches from running to waiting (blocks)
– 2. A process is temporarily paused because of some 

interrupt
– 3. An I/O (or other operation) completes
– 4. When a process terminates

● If scheduling occurs in 1 and 4 only: non-preemtive
● If scheduling occurs in all four: preemptive



  

Preemptive Schedulers

● Preemptive schedulers are slightly more complicated
● The difficulty is that we may have race conditions 

and need synchronization
● The kernel itself might not be preemptive even on 

preemptive systems.
– Simple to use and verify
– Unsuitable for real time use

● Most modern kernels are preemtable



  

Context Switching

● Context switching involves
– Switching to monitor mode
– Saving the state of the current process in the CPU
– Loading the state of another process
– Switching to user mode and jumping to the saved PC

● Context switching is rather expensive
– Page table installation
– Clearing of cache
– Etc.

● The program that does the switching is called the dispatcher
● We can monitor the dispatcher activity on Linux with vmstat or through 

proc/<PID>/status



  

Scheduling Criteria

● CPU utilization
● Throughput
● Turnaround time
● Waiting time
● Response time



  

Basic Scheduling Algorithms

● First Come First Served
– Simple and fair, but has large avg waiting time

● Shortest Job First
– Is the best in terms of waiting time
– Has issues with starvation
– We need to guess the future!

● There are methods to guess the duration of the next CPU burst

● Shortest Remaining Time First
– The preemptive sister of SJF

● Priority Scheduling
● Round Robin

– The most suitable for interactive systems
– Has long waiting times



  

SJF

τn+1=α t n+(1−α) τn



  

Round Robin

● RR has long waiting times
● Every process runs for at most one time slice or 

time quantum
– If not done before the end of the slice it is 

preempted

● With a huge time slice RR becomes FCFS
● With a tiny slice we spend most time in context 

switching



  

Multilevel Queue Scheduling

● The system has multiple queues of increasing priority
● When a high priority queue is empty, processes from 

lower priority queues can run
● They are preemptive, in general.
● Has problem with starvation

– One solution is aging

● It is also inflexible
– What happens if the priority depends on the predicted 

duration of the CPU burst and the prediction is wrong.



  

Multilevel Feedback Queues

● Initially all processes enter the high priority 
queue. It runs RR with a short time slice

● If they use up their slice in one go the are 
demoted to the next lower queue that has RR 
with longer slice

● If they use that too, they are demoted further
● The lowest priority queues have FCFS



  

Thread Scheduling

● In user level threads the kernel (and thus the 
scheduler) knows nothing about the threads
– All the scheduling is done within the time allotted to 

the mother-process
– We call it process contention scope

● In kernel level threads all the threads compete 
for the CPUs, even against threads that belong 
to a different process
– We call this system contention scope.



  

Pthread Scheduling

● Pthreads can work in both process and system 
contention scope (in theory).

● Most systems only implement one or the other
● The API provides two functions for this

– pthread_attr_setscope
– pthread_attr_getscope



  

Multi-Processor Scheduling

● There are two approaches
– Asymmetric: one processor does the scheduling and other 

kernel jobs (no need to synchronize)
– Symmetric: each processor is self scheduling. This is more 

complex as all processors need to access shared data

● Most systems do Symmetric Multi-Processing with 
either
– A global ready queue
– A per core ready queue to keep contention/synchronization 

low.



  

Affinity

● Processor affinity, ie what processes go to what cores (reduce 
cache invalidation, enforce I/O requirements, etc)
– Hard affinity
– Soft affinity

● Many computer systems rely on affinity mainly to improve 
cache performance (UMA systems), or memory speed (NUMA)

● Other computer systems rely on affinity to function properly (eg 
h/w connected to one core only)

● Heterogeneous Multiprocessing systems rely on affinity to 
conserve power (big.LITTLE ARM processors like Exynos 5) 



  

Load Balancing

● With multiple processes/cores we may need to do 
load balancing
– Interferes with affinity
– Needed on systems where every processor has its own 

queue

● There are two schemes (often mixed)
– Push balancing (a separate process keeps an eye on 

load balance)
– Pull balancing (idle cores “pulling” load from other cores)



  

Multi-core and multi-threading

● In a modern system memory is much slower than the 
CPU (many dozens of cycles to read from the memory

● This results in long memory stalls
● If a processor could run more than one thread at a 

time it can switch to another thread during a stall 
(computer architecture jargon: “thread” can mean both 
thread and process)

● A two way multithreaded core appears as two cores to 
the OS.



  

Multi-core and multi-threading

● There are two general multithreading schemes
– Coarse grained (only for long stalls, needs to flush 

the pipeline)
– Fine grained (the pipeline contains a mix of 

instructions from both threads, thread switching at 
almost every cycle)

● Scheduling becomes more complex: two 
threads on the same core run slower than on 
two cores.



  

Real time Scheduling

● Like most things in this lecture, there are two 
kinds
– Soft real time systems (guarantee attention within 

certain time limits)
– Hard real time systems (guarantee completion 

within certain time limits)



  

Minimize latency

● Latency is the time between an event occurring and 
being serviced

● Two types of latency
– Interrupt latency: the time after the interrupt arrives where the 

processor finishes up what is doing and attends the interrupt
● Disabling interrupts increases latency
● Large number of registers to save increases it too.

– Dispatch latency: the time to do context switch, free 
resources

● preemptive kernels can help bound this latency.



  

Priority and Preemption

● When an event occurs that needs attention, we 
need both a priority scheduler and preemption
– Even then we can guarantee attention, not 

completion.

● Hard real time systems must have
– Periodic processes with constant period
– Well defined processing time
– Well defined deadline



  

Hard Real Time Scheduling

● All processes are considered periodic with 
period p.
– This means they have a rate 1/p.

● They have a deadline d.
– This means that the have to finish within d time 

from the start of the period.

● They have an execution time t.
– It should be less than the deadline d.



  

Rate monotonic scheduling

● Priority is inverse of period (shorter period, higher 
priority)

● Every process has the same max processing time in 
every period

● Deadline is the start of next period
● The total CPU utilization must remain less than 100%

– But not much less!

● It is the optimal among fixed priority systems.



  

Rate Monotonic Scheduling

● An example that works fine, but would not work 
with the priorities the other way around.

P2: p2=100
t2=35

P1

P1: p1=50
t1=20

P2P1 P2

50 100702050

Idle

75



  

Rate-Monotonic Scheduling

● Has many nice properties but does not always 
work
– Even if there is a solution.

● Can be proven that the CPU utilization cannot be 
100% if we need to schedule two or more 
processes

● With two processes can go down to 83%
– So it is easy to find a set of processes that cannot be 

scheduled with this method



  

Rate-Monotonic Scheduling

P1

EDF
P1: completes 

both cycles

P2: completes
Them too

P1 P2

P2

25 60 75 85

P2: p2=80
t2=35

P1 P2

50

P1

80

Rate Mon.
P1: completes 

both cycles

P2: misses
deadline by 5

P1: p1=50
t1=25



  

Earliest Deadline first

● Much better than rate monotonic
● Can work as easily for periodic and non 

periodic processes
– But makes it harder to decide in advance if the 

deadlines will be met.

● It is theoretically the best
– If we ignore context switching etc.
– Priorities change from cycle to cycle.



  

Linux Scheduling

● Early Linux schedulers were similar to Unix 
ones:
– Nothing real time or multicore about them

● Then multicore machines arrived and O(1) 
scheduler
– O(1) was great for SMP
– Not great for interactive processes

● Then CFS came (Completely Fair Scheduler)



  

 CFS

● For non-real time priority classes
– Gives more time to higher priority processes based on a virtual 

run time
● The more CPU it used recently the smaller proportion of the CPU they 

get
● The higher the priority (low nice number) the more CPU they get

● For real time priority classes
– Allows pthreads to chose between SCHED_FIFO and 

SCHED_RR
– The priority is fixed (no virtual time or nice number)
– Higher priority jobs run first.



  

Windows Scheduling

● Has priority based preemptive scheduler
● Priorities 1-15 are variable class priorities
● Priorities 15-31 are real time priorities
● Processes get a priority and this can change for 

variable class processes
– If it exceeds a time quantum goes down
– If it just got unblocked goes up

● If it was waiting keyboard input goes up a lot.



  

Algorithm Evaluation

● Deterministic Modelling
– Examine characteristic, realistic or theoretical 

scenarios
– Helps identify weaknesses

● Queuing Models (statistical models)
– Very intuitive for simple schedulers
– Give answers in simple formulas
– Hard to extend to very complex systems



  

Queuing models

● Apply to anything from mechanical telephone 
networks, meteorite impacts, bus schedules, 
disk crashes, photons falling on a telescope.

● For example:
– Little’s Law (or formula)
– The average queue length is the arrival rate times 

the average waiting time.



  

Little’s Law

n=
T totw
N ticks

λ=
N jobs

N ticks

T w=
T totw
N jobs

n=λT w



  

Simulations

● Give us a great way to evaluate a system with 
relatively low cost.

● Could use synthetic data or trace tapes from 
real systems
– In other words both statistical and deterministic 

models.

● They typically require many hours of 
computations.
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