

Operating Systems

Scheduling
Based on Ch. 5 of

OS Concepts by SGG

Scheduling

● If we have more processes than cores we have to
decide which ones run and which ones wait

● In other words we have to do scheduling
● We have to make sure that

– The CPU and the rest of the system are used efficiently
– The we do not have starvation
– The users are satisfied
– Priorities are respected
– etc.

The life of a Process

● From a scheduler point of view, a process alternates
between two states
– CPU burst
– I/O burst

● The CPU scheduler is sometimes referred to as
short-term scheduler

● There are two kinds of schedulers
– Preemptive
– Non preemptive

The Life of a Scheduler

● The simplest would be to have a ready queue
and any time it is activated it moves the running
process to the end of some queue and moves
the head of the ready queue to run on a CPU

● This would work but not very well
– For example: if there are 10 I/O-bound process

waiting for a cpu-hog

When Scheduling Takes Place

● A scheduler may be activated in one of four
situations
– 1. A process switches from running to waiting (blocks)
– 2. A process is temporarily paused because of some

interrupt
– 3. An I/O (or other operation) completes
– 4. When a process terminates

● If scheduling occurs in 1 and 4 only: non-preemtive
● If scheduling occurs in all four: preemptive

Preemptive Schedulers

● Preemptive schedulers are slightly more complicated
● The difficulty is that we may have race conditions

and need synchronization
● The kernel itself might not be preemptive even on

preemptive systems.
– Simple to use and verify
– Unsuitable for real time use

● Most modern kernels are preemtable

Context Switching

● Context switching involves
– Switching to monitor mode
– Saving the state of the current process in the CPU
– Loading the state of another process
– Switching to user mode and jumping to the saved PC

● Context switching is rather expensive
– Page table installation
– Clearing of cache
– Etc.

● The program that does the switching is called the dispatcher
● We can monitor the dispatcher activity on Linux with vmstat or through

proc/<PID>/status

Scheduling Criteria

● CPU utilization
● Throughput
● Turnaround time
● Waiting time
● Response time

Basic Scheduling Algorithms

● First Come First Served
– Simple and fair, but has large avg waiting time

● Shortest Job First
– Is the best in terms of waiting time
– Has issues with starvation
– We need to guess the future!

● There are methods to guess the duration of the next CPU burst

● Shortest Remaining Time First
– The preemptive sister of SJF

● Priority Scheduling
● Round Robin

– The most suitable for interactive systems
– Has long waiting times

SJF

τn+1=α t n+(1−α) τn

Round Robin

● RR has long waiting times
● Every process runs for at most one time slice or

time quantum
– If not done before the end of the slice it is

preempted

● With a huge time slice RR becomes FCFS
● With a tiny slice we spend most time in context

switching

Multilevel Queue Scheduling

● The system has multiple queues of increasing priority
● When a high priority queue is empty, processes from

lower priority queues can run
● They are preemptive, in general.
● Has problem with starvation

– One solution is aging

● It is also inflexible
– What happens if the priority depends on the predicted

duration of the CPU burst and the prediction is wrong.

Multilevel Feedback Queues

● Initially all processes enter the high priority
queue. It runs RR with a short time slice

● If they use up their slice in one go the are
demoted to the next lower queue that has RR
with longer slice

● If they use that too, they are demoted further
● The lowest priority queues have FCFS

Thread Scheduling

● In user level threads the kernel (and thus the
scheduler) knows nothing about the threads
– All the scheduling is done within the time allotted to

the mother-process
– We call it process contention scope

● In kernel level threads all the threads compete
for the CPUs, even against threads that belong
to a different process
– We call this system contention scope.

Pthread Scheduling

● Pthreads can work in both process and system
contention scope (in theory).

● Most systems only implement one or the other
● The API provides two functions for this

– pthread_attr_setscope
– pthread_attr_getscope

Multi-Processor Scheduling

● There are two approaches
– Asymmetric: one processor does the scheduling and other

kernel jobs (no need to synchronize)
– Symmetric: each processor is self scheduling. This is more

complex as all processors need to access shared data

● Most systems do Symmetric Multi-Processing with
either
– A global ready queue
– A per core ready queue to keep contention/synchronization

low.

Affinity

● Processor affinity, ie what processes go to what cores (reduce
cache invalidation, enforce I/O requirements, etc)
– Hard affinity
– Soft affinity

● Many computer systems rely on affinity mainly to improve
cache performance (UMA systems), or memory speed (NUMA)

● Other computer systems rely on affinity to function properly (eg
h/w connected to one core only)

● Heterogeneous Multiprocessing systems rely on affinity to
conserve power (big.LITTLE ARM processors like Exynos 5)

Load Balancing

● With multiple processes/cores we may need to do
load balancing
– Interferes with affinity
– Needed on systems where every processor has its own

queue

● There are two schemes (often mixed)
– Push balancing (a separate process keeps an eye on

load balance)
– Pull balancing (idle cores “pulling” load from other cores)

Multi-core and multi-threading

● In a modern system memory is much slower than the
CPU (many dozens of cycles to read from the memory

● This results in long memory stalls
● If a processor could run more than one thread at a

time it can switch to another thread during a stall
(computer architecture jargon: “thread” can mean both
thread and process)

● A two way multithreaded core appears as two cores to
the OS.

Multi-core and multi-threading

● There are two general multithreading schemes
– Coarse grained (only for long stalls, needs to flush

the pipeline)
– Fine grained (the pipeline contains a mix of

instructions from both threads, thread switching at
almost every cycle)

● Scheduling becomes more complex: two
threads on the same core run slower than on
two cores.

Real time Scheduling

● Like most things in this lecture, there are two
kinds
– Soft real time systems (guarantee attention within

certain time limits)
– Hard real time systems (guarantee completion

within certain time limits)

Minimize latency

● Latency is the time between an event occurring and
being serviced

● Two types of latency
– Interrupt latency: the time after the interrupt arrives where the

processor finishes up what is doing and attends the interrupt
● Disabling interrupts increases latency
● Large number of registers to save increases it too.

– Dispatch latency: the time to do context switch, free
resources

● preemptive kernels can help bound this latency.

Priority and Preemption

● When an event occurs that needs attention, we
need both a priority scheduler and preemption
– Even then we can guarantee attention, not

completion.

● Hard real time systems must have
– Periodic processes with constant period
– Well defined processing time
– Well defined deadline

Hard Real Time Scheduling

● All processes are considered periodic with
period p.
– This means they have a rate 1/p.

● They have a deadline d.
– This means that the have to finish within d time

from the start of the period.

● They have an execution time t.
– It should be less than the deadline d.

Rate monotonic scheduling

● Priority is inverse of period (shorter period, higher
priority)

● Every process has the same max processing time in
every period

● Deadline is the start of next period
● The total CPU utilization must remain less than 100%

– But not much less!

● It is the optimal among fixed priority systems.

Rate Monotonic Scheduling

● An example that works fine, but would not work
with the priorities the other way around.

P2: p2=100
t2=35

P1

P1: p1=50
t1=20

P2P1 P2

50 100702050

Idle

75

Rate-Monotonic Scheduling

● Has many nice properties but does not always
work
– Even if there is a solution.

● Can be proven that the CPU utilization cannot be
100% if we need to schedule two or more
processes

● With two processes can go down to 83%
– So it is easy to find a set of processes that cannot be

scheduled with this method

Rate-Monotonic Scheduling

P1

EDF
P1: completes

both cycles

P2: completes
Them too

P1 P2

P2

25 60 75 85

P2: p2=80
t2=35

P1 P2

50

P1

80

Rate Mon.
P1: completes

both cycles

P2: misses
deadline by 5

P1: p1=50
t1=25

Earliest Deadline first

● Much better than rate monotonic
● Can work as easily for periodic and non

periodic processes
– But makes it harder to decide in advance if the

deadlines will be met.

● It is theoretically the best
– If we ignore context switching etc.
– Priorities change from cycle to cycle.

Linux Scheduling

● Early Linux schedulers were similar to Unix
ones:
– Nothing real time or multicore about them

● Then multicore machines arrived and O(1)
scheduler
– O(1) was great for SMP
– Not great for interactive processes

● Then CFS came (Completely Fair Scheduler)

 CFS

● For non-real time priority classes
– Gives more time to higher priority processes based on a virtual

run time
● The more CPU it used recently the smaller proportion of the CPU they

get
● The higher the priority (low nice number) the more CPU they get

● For real time priority classes
– Allows pthreads to chose between SCHED_FIFO and

SCHED_RR
– The priority is fixed (no virtual time or nice number)
– Higher priority jobs run first.

Windows Scheduling

● Has priority based preemptive scheduler
● Priorities 1-15 are variable class priorities
● Priorities 15-31 are real time priorities
● Processes get a priority and this can change for

variable class processes
– If it exceeds a time quantum goes down
– If it just got unblocked goes up

● If it was waiting keyboard input goes up a lot.

Algorithm Evaluation

● Deterministic Modelling
– Examine characteristic, realistic or theoretical

scenarios
– Helps identify weaknesses

● Queuing Models (statistical models)
– Very intuitive for simple schedulers
– Give answers in simple formulas
– Hard to extend to very complex systems

Queuing models

● Apply to anything from mechanical telephone
networks, meteorite impacts, bus schedules,
disk crashes, photons falling on a telescope.

● For example:
– Little’s Law (or formula)
– The average queue length is the arrival rate times

the average waiting time.

Little’s Law

n=
T totw
N ticks

λ=
N jobs

N ticks

T w=
T totw
N jobs

n=λT w

Simulations

● Give us a great way to evaluate a system with
relatively low cost.

● Could use synthetic data or trace tapes from
real systems
– In other words both statistical and deterministic

models.

● They typically require many hours of
computations.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

