
2.2 An example: Palindromes

Let’s begin with an example where we can figure out the exact complexity of a decision
problem in the (single-tape) Turing machine model.

Let PAL be the set of all palindromes over the alphabet {a, b, c}.
In class we saw that a TM can decide PAL in O(n2) time.
In fact, it is impossible to build a TM that recognizes palindromes faster than this.
Intuition: the pieces of information that the TM must compare are spread far apart.

When the head travels from one character to its match, it can only carry a small amount of
information in the local state, so it will have to make many such trips.

Theorem 2 Any (single-tape) TM that decides PAL uses ⌦(n2) steps in the worst case.

Proof: Consider any TM M that decides PAL.
Let T (n) be the maximum number of steps that M takes on an input of length n. We

shall show that T (n) is ⌦(n2).
Define the crossing sequence at location i on input x, denoted Ci(x), to be the sequence

of states M is in when its head crosses the boundary between tape square i and tape square
i+ 1, if the TM is run on input x.

Lemma 3 Suppose Ci(x) = Cj(y) for two strings x, y 2 PAL. Let x0
be the first i characters

of x and let y0 be the last |y| � j characters of y. (If j > |y|, then y = ".) Then M must

accept the string x0y0.

Proof (sketch): Intuitively, from “the point of view of x0” it doesn’t matter what comes
later on the tape: all that matters is that it generates the same crossing sequence as the rest
of x does. Similarly for y0.

The execution of the Turing machine on input z = x0y0 can be chopped up into chunks: we
start a new chunk whenever the TM’s head crosses the boundary between square i and i+1.
Call these chunks E0

z , E
1
z , . . . , E

m
z , where m is the length of the crossing sequence Ci(x) =

Cj(y). Similarly, M ’s execution on input x can be chopped into chunks E1
x, E

2
x, . . . , E

m
x

according to when the head crosses the boundary between square i and i + 1 and M ’s
execution on input y can be chopped into chunks E1

y , E
2
y , . . . , E

m
y according to when the

head crosses the boundary between square j and j + 1. Then, the sequence of steps M
performs during Ek

z will be identical to the steps it performs during Ek
x for all even k and

the sequence of steps M performs during Ek
z will be identical to the steps it performs during

Ek
y for all odd k. (To make this formal, we would have to do an induction proof on k, and

for each k a nested induction proof to show that the sequence of steps within that chunk
would be the same in the two executions.)

M accepts both x and y since they are both palindromes. Since Ci(x) = Cj(y), it must
halt when the head is in the same “half” of both strings. (I.e., it halts on input x when the
head is in the first i squares i↵ it halts on input y when the head is in the first j squares.)
It follows that M will accept x0y0: The accepting step of either M ’s computation on input x
or M ’s computation on input y will have a corresponding step in M ’s computation on input
x0y0. So M outputs yes for input x0y0. This completes the proof of the lemma.

7

Now, I would like to argue that no two strings can have a crossing sequence in common,
to use a counting argument: If T (n) is too small, crossing sequences must be short, and
there won’t be enough di↵erent crossing sequences to assign to all the di↵erent strings.

The crossing sequences would have to all be di↵erent if x0y0 was guaranteed not to be a
palindrome. So we will consider a bunch of strings designed so that if you glue together the
prefix of 1 with the su�x of another, the result will not be a palindrome.

Let Ln = {wcnwR : w 2 {a, b}n}.

Lemma 4 If n+ 1 i, j 2n and x, y 2 Ln with x 6= y then Ci(x) 6= Cj(y).

Proof: Assume Ci(x) = Cj(y). Then x0y0 (as defined above) consists of the first n char-
acters of x followed by at least 1 c, followed by the last n characters of y. Since x 6= y, the
first n characters of x0y0 are not the same as the last n characters of x0y0 reversed. So x0y0 is
not a palindrome, contradicting the previous lemma, which says M accepts x0y0.

Now, for each input string in Ln, some crossing sequence (for a position between n + 1
and 2n) must have length at most T (3n)

n . (If not, the running time would be more than T (3n)
since each element of every crossing sequence corresponds to a step of M .)

Now we can do our counting argument.

Total number of crossing sequences of length at most ` = T (3n)
n is

P̀
i=0

|Q|i |Q|`+1, where

Q is the state set of M .
Each of the 2n strings in Ln must be assigned at least one of those short crossing sequences

and no two can be assigned the same one (by lemma above).
So,

|Q|`+1 � 2n

`+ 1 � n log|Q| 2

T (3n)

n
� n log|Q| 2� 1

T (3n) � (log|Q| 2)n
2 � 1

It follows that T (n) is ⌦(n2). (Strictly speaking, we should prove that T (3n + 1) and
T (3n + 2) is bounded below by some constant times n2 too, just to show that the bound
holds for all (large) values of n, but the argument for these values would be done in exactly
the same way as for T (3n).)

8

