
EECS 3401 — AI and Logic Prog. — Lecture 18
Adapted from slides of Brachman & Levesque (2005)

Vitaliy Batusov
vbatusov@cse.yorku.ca

York University

November 23, 2020

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 18 November 23, 2020 1 / 21

Today: GOLOG, Planning, Intro to Uncertain Reasoning

Required reading: Russell & Norvig Ch.13 and Ch. 14.1, 14.2

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 18 November 23, 2020 2 / 21

Recap: The Do formula

For each complex action A, it is possible to define a formula of situation
calculus, Do(A, s, s ′), that says that action A, when started in situation s,
may legally terminate in situation s ′

Primitive action: Do(A, s, s ′) , Poss(A, s) ∧ s ′ = do(A, s)

Sequence: Do([A; B], s, s ′) , ∃s ′′
[
Do(A, s, s ′′) ∧ Do(B, s ′′, s ′)

]
Conditional: Do([if φ then A else B], s, s ′) ,

φ(s) ∧ Do(A, s, s ′) ∨ ¬φ(s) ∧ Do(B, s, s ′)

Nondet. branch: Do([A | B], s, s ′) , Do(A, s, s ′) ∨ Do(B, s, s ′)

Nondet. choice: Do([πx .A], s, s ′) , ∃x Do(A, s, s ′)

Note: programming language constructs with a purely logical situation
calculus interpretation

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 18 November 23, 2020 3 / 21

Recap: GOLOG

To execute a GOLOG program A is to find a sequence of primitive actions
such that performing them starting in some initial situation s would lead
to a situation s ′ where the formula Do(A, s, s ′) holds

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 18 November 23, 2020 4 / 21

GOLOG example

Primitive actions: pickup(x), putonfloor(x), putontable(x)
Fluents: Holding(x , s), OnTable(x , s), OnFloor(x , s)

Action preconditions:

Poss(pickup(x), s) ↔ ∀z .¬Holding(z , s)

Poss(putonfloor(x), s) ↔ Holding(x , s)

Poss(putontable(x), s) ↔ Holding(x , s)

Successor state axioms:

Holding(x , do(a, s)) ↔ a = pickup(x) ∨
Holding(x , s) ∧ a 6= putontable(x) ∧ a 6= putonfloor(x)

OnTable(x , do(a, s)) ↔ a = putontable(x) ∨ OnTable(x , s) ∧ a 6= pickup(x)

OnFloor(x , do(a, s)) ↔ a = putonfloor(x) ∨ OnFloor(x , s) ∧ a 6= pickup(x)

Initial situation:

∀x ¬Holding(x , S0)

OnTable(x , S0) ↔ x = A ∨ x = B

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 18 November 23, 2020 5 / 21

GOLOG example

Complex actions:

proc ClearTable :

while ∃b.OnTable(b) do πb[OnTable(b)?; RemoveBlock(b)]

proc RemoveBlock(x) : pickup(x); putonfloor(x)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 18 November 23, 2020 6 / 21

Running GOLOG

To find a sequence of actions constituting a legal execution of a
GOLOG program, we can use Resolution with answer extractions

For the above example, we have

KB |= ∃s Do(ClearTable, S0, s)

with s determined through unification as

s = do(putonfloor(B), do(pickup(B), do(putonfloor(A), do(pickup(A),S0))))

and so a correct sequence is

〈pickup(A), putonfloor(A), pickup(B), putonfloor(B)〉

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 18 November 23, 2020 7 / 21

Running GOLOG

When what is known about the actions and initial state can be
expressed as Horn clauses, the evaluation can be done in Prolog.

The GOLOG interpreter in Prolog has clauses like

do(A,S1,do(A,S1)) :- prim_action(A), poss(A,S1).

do(seq(A,B),S1,S2) :- do(A,S1,S3), do(B,S3,S2).

Compare this to the logical definitions of Do.

This provides a way of controlling an agent at a high level

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 18 November 23, 2020 8 / 21

Planning (again)

We saw how an agent could figure out what to do given a high-level
program or complex action to execute

Now, consider a related but more general reasoning problem: figure
out what to do to make an arbitrary condition true.

This is the definition of the planning problem
The condition to be achieved is called the goal
The sequence of actions that will make the goal true is called the plan

Recall: different levels of abstraction

In practice, planning involves anticipating what the world will be like,
but also observing the world and replanning as necessary

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 18 November 23, 2020 9 / 21

Planning using Situation Calculus

Situation calculus can be used to represent what is known about the
current state of the world and the available actions

The planning problem can then be formulated as follows.

Given a formula Goal(s), find a sequence of actions α1, . . . , αn

such that

KB |= Goal(do(〈α1, . . . , αn〉,S0)) ∧ Legal(do(〈α1, . . . , αn〉, S0))

where do(〈α1, . . . , αn〉,S0) is an abbreviation for
do(αn, do(αn−1, . . . , do(α2, do(α1,S0)) . . .)) and Legal
implements the notion of legality from last lecture.

So, given a goal formula, we want a sequence of actions such that (a) the goal

formula holds in the situation that results from executing the actions, and (b) it is

possible to execute each action in the corresponding situation

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 18 November 23, 2020 10 / 21

Planning by Answer Extraction

Having formulated planning in this way, we can use Resolution with
answer extraction to find a sequence of actions:

KB |= ∃s (Goal(s) ∧ Legal(s))

We can see how this will work using a simplified version of a previous
example:

An object is on the table that we would like to have on the floor.
Dropping it will put it on the floor, and we can drop it, provided we are
holding it. To hold it, we need to pick it up, and we can always to so.

KB

OnFloor(x , do(drop(x), s))

Holding(x , do(pickup(x), s))

Holding(x , s) → Poss(drop(x), s)

Poss(pickup(x), s)

OnTable(B, S0)

Goal

OnFloor(B, s)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 18 November 23, 2020 11 / 21

Deriving a Plan

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 18 November 23, 2020 12 / 21

Using Prolog

Because all the required facts here can be expressed as Horn clauses, we
can use Prolog directly to synthesize a plan:

onfloor(X,do(drop(X),S)).

holding(X,do(pickup(X),S)).

poss(drop(X),S) :- holding(X,S).

poss(pickup(X),S).

ontable(b,s0).

legal(s0).

legal(do(A,S)) :- poss(A,S), legal(S).

With the prolog goal ?- onfloor(b,S), legal(S). we get the

solution S = do(drop(b),do(pickup(b),s0)) .
(Demo)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 18 November 23, 2020 13 / 21

Planning in GOLOG

Consider: while ¬Goal do πa.a

Planning problem in GOLOG

Planning problems are typically hard

Too hard for blind search

Too hard for Resolution alone

Not to mention that entailment in FOL is undecidable

In search: heuristics

In FOL: while ¬Goal do πa.[Acceptable(a)?; a],
where Acceptable(a) describes domain-dependent guidance.

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 18 November 23, 2020 14 / 21

New Topic
Vagueness, Uncertainty, and Degrees of Belief

Ordinary common-sense knowledge quickly moves away from
categorical statements like a P is always a Q

Many ways to come up with less categorical information

things are usually (almost never; occasionally; seldomly; rarely; almost
always) a certain way
judgments about how good an example something is (“barely rich”,
“not very tall”, etc.)
imprecision of sensors
reliability of sources of information
strength/confidence/trust in generic information or deductive rules

With information like this, conclusions will not “follow” in the usual
sense

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 18 November 23, 2020 15 / 21

Weakening a Universal

There are at least three ways a universal can be made to be less categorical

∀x P(x)

1 Strength of quantifier
“95% of birds can fly”
statistical interpretation, probabilistic sentences

2 Degree of belief in the whole sentence
“80% confidence in this fact”
uncertain knowledge, subjective probability

3 Applicability of predicate / degree of membership
“fairly tall”
flexible membershit, vague predicates

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 18 November 23, 2020 16 / 21

Objective probability

Statistical (frequency) view of sentences

Objective: does not depend on who is assessing the probability

Always applied to collections (as opposed to singleton random events)

Can use probabilities to correspond to English words like “rarely”,
“likely”, “usually”

Generalized quantifiers
Compare: for most x, Q(x) vs. for all x, Q(x)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 18 November 23, 2020 17 / 21

Basic postulates

Real numbers between 0 and 1 representing frequency of an event in
a large-enough random sample

0 = “never happens”, 1 = “always happens”

Start with set U of all possible occurrences. An event a is any subset
of U. A probability measure is any function Pr from events to [0, 1]
satisfying

Pr(U) = 1
If a1, . . . , an are disjoint events, then Pr(∪iai) =

∑
i Pr(ai)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 18 November 23, 2020 18 / 21

Basic postulates

Conditioning: the probability of one event may depend on its
interaction with others

Pr(a | b) =
Pr(a ∩ b)

Pr(b)

Conditional independence: event a is judged independent of event b
conditional on background knowledge s if knowing that b happened
does not affect the probability of a

Pr(a | s) = Pr(a | b, s)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 18 November 23, 2020 19 / 21

Some consequences

Conjunction:

Pr(ab) = Pr(a | b) · Pr(b) (in general)

= Pr(a) · Pr(b) (conditionally indep.)

Negation:

Pr(¬s) = 1− Pr(s)

Pr(¬s | d) = 1− Pr(s | d)

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 18 November 23, 2020 20 / 21

Some consequences

If b1, b2, . . . , bn are pairwise disjoint and exhaust all possibilities, then

Pr(a) =
∑
i

Pr(abi) =
∑
i

Pr(a | bi) · Pr(bi)

Pr(a | c) =
∑
i

Pr(abi | c)

Bayes’ rule

Pr(a | b) =
Pr(a) · Pr(b | a)

Pr(b)

If a is a disease and b a symptom, it is usually easier to estimate numbers

on the right-hand side

Vitaliy Batusov vbatusov@cse.yorku.ca (YorkU) EECS 3401 Lecture 18 November 23, 2020 21 / 21

