EECS 3401 — Al and Logic Prog. — Lecture 17

Adapted from slides of Brachman & Levesque (2005)

Vitaliy Batusov
vbatusov@cse.yorku.ca

York University

November 16, 2020

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17

November 16, 2020

1/

37

o Today: Actions, Situations, and GOLOG
@ Required reading: R & N Ch.11 (10 in 3-rd ed.)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 2/37

Situation Calculus

The situation calculus is a dialect of FOL for representing dynamically
changing worlds in which all changes are the result of named actions.

@ Many-sorted logic: has several domains, one for each sort. Each term
is interpreted only within its own sort.

@ Situation calculus has sorts action, situation, and object

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 3/37

Actions and Situations

Actions: denoted by function terms of sort action, e.g.,
e put(x,y) — put thing x on top of thing y
e walk(location) — walk to location location

@ pickup(r,x) — robot r picks up thing x

Situations: world histories built using specialized symbols Sy and do(-, -)
@ Sy — a constant, always denotes the initial situation

@ do(a,s) — a situation that results from doing action a in situation s

Example: do(put(A, B), do(put(B, C), Sp))

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 4/37

Fluents

@ Already understand: predicates in FOL

@ Fluents: predicates whose values may vary from situation to
situation

@ Syntactically, a fluent is a predicate whose last argument is of sort
situation
Example: Holding(r,x,s) — robot r is holding thing x in situation s

Can also say things like =Holding(r, x,s) A Holding(r, x, do(pickup(r,x,),s))
@ Note: there is no distinguished “current” situation. A sentence can
talk about many different situations, past, present, and future.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 5/37

Poss

Also:

e A distinguished predicate symbol Poss(a, s) is used to state that
action a is legal to carry out in situation s.

Poss(pickup(r, x), So) — it is possible for robot r to pick up thing x in the initial

situation

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 6/37

Preconditions and effects

@ It is necessary to include in a KB not only facts about the initial
situation, but also about world dynamics

e l.e., a formal account of how and why things which are true (false) in
one situation become false (true) in the next

@ Action preconditions and action effects

November 16, 2020 7/37

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17

Preconditions and effects

@ Actions typically have preconditions: what needs to be true for the
action to be performed

Poss(pickup(R, X), S) <+ VZ [~Holding(R, Z, S)]
A —Heavy(X) A NextTo(R, X, S)

Free variables are assumed to be universally quantified from outside
Poss(repair(R, X), S) <+ HasGlue(R, S) A Broken(X, S)

These are called precondition axioms

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020

Preconditions and effects

@ Actions typically have effects: the fluents that change as the result of
performing the action

Fragile(X) — Broken(X, do(drop(R, X), S))

—Broken(X, do(repair(R, X), S))

These are called effect axioms

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 9/37

The Frame Problem

o Effect axioms only describe what changes. To fully describe how the
world works, need to specify what fluents are unaffected by what
actions.

Colour(X, C,S) — Colour(X, C, do(drop(R, X), S))

—Broken(X,S) A [X # Y V —Fragile(X)] — —Broken(X, do(drop(R, Y), S))

These are called frame axioms

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 10 /37

Frame Problem

@ Problem! There will always be a vast number of frame axioms.
An object's colour is unaffected by picking things up, opening a door, calling a
friend, turning on a light, weather patterns in China, etc.

@ In building a KB, need to include 2 x |A| x |F| facts about what
doesn’t change, and then reason efficiently with them

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 11/37

Frame Problem

@ Suppose we have a complete set of effect axioms (non-trivial
dynamics, written down by a specialist)

@ Can we maybe generate the frame axioms mechanically?
@ And, hopefully, in some compact form

@ Yes, under some assumptions (later)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020

The Projection Task

What is the situation calculus good for?

o Projection task: Given a sequence of actions, determine what would
be true in the situation that results from performing that sequence

@ More formally: Suppose R(S) is a formula with a free situation
variable S. To find out if R(S) would be true after performing actions
(a1,...,an) in the initial situation, we determine whether or not

KB): R(do(am do(a,,_l, ceey do(al, 50) ..)))

e Example: using axioms above, it follows that —Broken(b, S) would
hold after executing the sequence

(pickup(a), pickup(B), drop(B), repair(B), drop(A))

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 13 /37

Legality / Executability

@ Projection does not test for whether the sequence of actions is legal
(wrt precondition axioms)

@ We call a situation legal is it is the initial situation or the result of
performing an action whose preconditions are satisfied starting in a
legal situation

o Legality task: task of determining whether a sequence of actions
leads to a legal situation

@ More formally: To find out if the sequence (a1, ..., a,) can be legally
performed in the initial situation, we determine whether or not

KB |= Poss(aj, do(aj_1,...,do(a1, S0)...))

foralll1 <i<n.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 14 /37

Limitations of Situation Calculus

(as presented)
@ No time: cannot talk about how long actions take, or when they occur

@ Only known actions: no hidden exogenous actions, no unnamed
events

@ No concurrency

@ Only discrete situations: no continuous actions, like pushing an object
from Ato B

@ Only hypotheticals: cannot say that an action has occurred or will
occur

@ Only primitive actions: no internal structure to actions, conditional
actions, iterative actions, etc.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 15 /37

A Solution to Frame Problem

@ Suppose there are two positive effect axioms for the fluent Broken:

Fragile(X) — Broken(X, do(drop(R, X), S))
NextTo(B, X,S) — Broken(X, do(explode(B), S))

o Can equivalently rewrite these as

IR{A = drop(R, X) A Fragile(X)}
V IB{A = explode(B) N NextTo(B, X, S)}
— Broken(X, do(A,S))

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020

A Solution to Frame Problem

@ Similarly for the negative effect axiom:
—Broken(X, do(repair(R, X), S))
can be rewritten as
JR{A = repair(R, X)} — —Broken(X, do(A, S))

Note how nice the right-hand sides are starting to look. This is called the
normal form for effect axioms. (One positive NF axiom, one negative NF
axiom.)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 17 /37

A Solution to Frame Problem

@ In general, for any fluent F, we can rewrite all the effect axioms as
two formulas of the form

Pr(X,A,S) — F(X,do(A,S)) (1)
Ne(X, A, S) — —F(X,do(A, S)) (2)
o Next, make a completeness assumption regarding these:

Assume that (1) and (2) characterize ALL the conditions under which
an action A changes the value of fluent F

@ Formally, this is captured by explanation closure axioms:

—F(X,S) A F(X,do(A,S)) — Pr(X,A,S) (3)
F(X,S)A=F(X,do(A,S)) = Np(X,A,S) (4)

November 16, 2020 18 /37

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17

A Solution to Frame Problem

e In fact, axioms (3) and (4) are, in fact, disguised versions of the
frame axioms!

=F(X,S)A=Pg(X,A,S) = —~F(X,do(A,S))

F(X,S)A=Ng(X,A,S) — F(X,do(A,S))

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 19 /37

A Solution to Frame Problem

@ Need some additional assumptions:
o Integrity of effect axioms: can't have Pr(X,A,S) and Nr(X, A, S)
hold at the same time—this must be provable from KB
e Unique names for actions—some standard axioms

@ With these and some effort, it can be shown that, in the models of
the KB, the axioms (1)—(4) are logically equivalent to

F(X,do(A,S)) <+ PE(X,A,S)V F(X,S) A—=Ng(X,A,S)

This is called the successor state axiom for F.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 20/37

Example of a SSA:

Broken(X, do(A, S)) <» 3R{A = drop(R, X) A Fragile(X)}
V IB{A = explode(B) N NextTo(B, X, S)}
V Broken(X,S) A —~3R{A = repair(R, X)}

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 21/37

A simple solution to the frame problem

@ This simple solution is due to Raymond Reiter yields the following
axioms:
e one SSA per fluent
e one precondition axiom per action
@ unique name axioms for actions
o Note: the length of a SSA is roughly proportional to the number of
actions which affect the truth value of the fluent

@ The conciseness of the solution relies on quantification over actions,
the assumption that relatively few actions affect each fluent, and the
completeness assumption (also, assumption of determinism)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 22/37

Limitation: primitive actions

@ With the above, we have no way of handling complex actions made
up of other actions, such as

conditionals: If a car is in the driveway, then drive, else walk
iterations: while there is a block on the table, remove one
non-deterministic choice: pick up some block and put in on the floor
etc.

@ Would like to define such actions in terms of the primitive actions,
and inherit their solution to the frame problem

@ Need a compositional treatment of the frame problem for complex
actions

@ Results in a novel programming language for discrete event
simulations and high-level robot control

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 23 /37

The Do formula

For each complex action A, it is possible to define a formula of situation
calculus, Do(A, s,s’), that says that action A, when started in situation s,
may legally terminate in situation s’

Primitive action: Do(A,s,s’) £ Poss(A,s) As’ = do(A,s)
Sequence: Do([A; Bl,s,s') £ 3s" [Do(A,s,s") A Do(B,s",s')]
Conditional: Do([if ¢ then A else B],s,s’) =
#(s) A Do(A,s,s") V —¢(s) A Do(B,s,s)
Nondet. branch: Do([A | B],s,s’) £ Do(A,s,s') vV Do(B,s,s’)
Nondet. choice: Do([rx.A],s,s’) = 3x Do(A,s,s’)

Note: programming language constructs with a purely logical situation
calculus interpretation

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 24 /37

GOLOG

GOLOG: (Algol in logic) is a programming language that generalizes
conventional imperative programming languages

@ the usual imperative constructs 4 concurrency, nondeterminism, etc.

@ bottoms out not on operations on internal states (e.g., assignment
statements, pointer updates) but on primitive actions in the world
(e.g., pick up a block)

@ what the primitive actions do is user-specified by precondition and
successor state axioms

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 25 /37

GOLOG

What does it mean to execute a GOLOG program?

o find a sequence of primitive actions such that performing them
starting in some initial situation s would lead to a situation s’ where
the formula Do(A, s, s") holds

@ give the sequence of actions to a robot for actual execution in the
world

Note: to find such a sequence, it will be necessary to reason about the
primitive actions!

Consider a program
A; [if Holding(x) then B else C]

Here, to decide between B and C, we need to determine if the fluent
Holding(x) would be true after executing A

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 26 /37

GOLOG example

Primitive actions: pickup(x), putonfloor(x), putontable(x)
Fluents: Holding(x,s), OnTable(x,s), OnFloor(x, s)

Action preconditions:
Poss(pickup(x), s) <» Vz.~Holding(z, s)
Poss(putonfloor(x), s) <+ Holding(x, s)
Poss(putontable(x), s) <» Holding(x, s)

Successor state axioms:
Holding(x, do(a, s)) <+ a = pickup(x) vV
Holding(x, s) A\ a # putontable(x) A a # putonfloor(x)

OnTable(x, do(a, s)) <» a = putontable(x) V OnTable(x,s) A a # pickup(x)
OnFloor(x, do(a, s)) <> a = putonfloor(x) V OnFloor(x,s) A a # pickup(x)

Initial situation:

Vx = Holding(x, So)
OnTable(x,S)) <+ x=AVx=B

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 27 /37

GOLOG example

Complex actions:

proc ClearTable :
while 3b.OnTable(b) do wb[OnTable(b)?; RemoveBlock(b)]
proc RemoveBlock(x) : pickup(x); putonfloor(x)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 28 /37

Running GOLOG

@ To find a sequence of actions constituting a legal execution of a
GOLOG program, we can use Resolution with answer extractions

@ For the above example, we have

KB = 3s Do(ClearTable, S, s)
with s determined through unification as
s = do(putonfloor(B), do(pickup(B), do(putonfloor(A), do(pickup(A), So))))
and so a correct sequence is

(pickup(A), putonfloor(A), pickup(B), putonfloor(B))

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 29 /37

Running GOLOG

@ When what is known about the actions and initial state can be
expressed as Horn clauses, the evaluation can be done in Prolog.

@ The GOLOG interpreter in Prolog has clauses like

do(A,S1,do(A,S1)) :- prim_action(A), poss(A,S1).
do(seq(A,B),S1,82) :- do(A,S1,S3), do(B,S3,S2).

Compare this to the logical definitions of Do.

@ This provides a way of controlling an agent at a high level

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020

GOLOG Demo

(A Quick Demo)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 31/37

Planning (again)

@ We saw how an agent could figure out what to do given a high-level
program or complex action to execute

@ Now, consider a related but more general reasoning problem: figure
out what to do to make an arbitrary condition true.

e This is the definition of the planning problem
e The condition to be achieved is called the goal
e The sequence of actions that will make the goal true is called the plan

@ Recall: different levels of abstraction

@ In practice, planning involves anticipating what the world will be like,
but also observing the world and replanning as necessary

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 32/37

Planning using Situation Calculus

@ Situation calculus can be used to represent what is known about the
current state of the world and the available actions

@ The planning problem can then be formulated as follows.

Given a formula Goal(s), find a sequence of actions ag,...,an,
such that

KB |= Goal(do({au,...,an), So)) A Legal(do({a1,...,an), So))

where do({aa,...,an), Sp) is an abbreviation for
do(ap, do(ap—1, ..., do(as, do(a1,S50))...)) and Legal
implements the notion of legality from last lecture.

So, given a goal formula, we want a sequence of actions such that (a) the goal
formula holds in the situation that results from executing the actions, and (b) it is
possible to execute each action in the corresponding situation

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 33/37

Planning by Answer Extraction

@ Having formulated planning in this way, we can use Resolution with
answer extraction to find a sequence of actions:

KB = 3s (Goal(s) A Legal(s))

@ We can see how this will work using a simplified version of a previous
example:
e An object is on the table that we would like to have on the floor.
Dropping it will put it on the floor, and we can drop it, provided we are
holding it. To hold it, we need to pick it up, and we can always to so.

KB Goal

OnFloor(x, do(drop(x), 5)) OnFloor(B, 5)
Holding(x, do(pickup(x), s))
Holding(x, s) — Poss(drop(x), s)
Poss(pickup(x), s)

OnTable(B, So)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020 34 /37

Deriving a Plan

Axiom 1 [Negated query + answer predicate]
expand Legal \ [=OnFloor(B.sI), —Legal(sl), A(s!)]
Axiom 3 [-~Legal(do(drop(B),s2)), A(do(drop(B),s2))]
[-Legal(s2), -Poss(drop(B),s2), A(do(drop(B).s2))]
Axiom 2
[~Legal(s2), ~Holding(B,s2), A(do(drop(B),s2))]
[A(do(drop(B) do(pickup(B).s3))), -Legal(do(pickup(B),s3))] expand Legal

[-Legal(s3), A(do(drop(B).do(pickup(B),s3))), ~Poss(pickup(B) 53), |

/ Axiom 4

Legalfor s, [~ Legal(s3), A(do(drop(B) do(pickup(B),s3)))]

[A(do(drop(B), do(pickup(B), S0)))]

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020

Using Prolog

Because all the required facts here can be expressed as Horn clauses, we
can use Prolog directly to synthesize a plan:

onfloor (X,do(drop(X),S)).
holding(X,do(pickup(X),S)).
poss(drop(X),S) :- holding(X,S).
poss(pickup(X),S).

ontable(b,s0).

legal(s0).

legal(do(A,S)) :- poss(A,S), legal(S).

With the prolog goal 7- onfloor(b,S), legal(S). 1 we get the

solution S = do(drop(b),do(pickup(b),s0)) .
(Demo)

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020

Planning in GOLOG

Consider: while —Goal do ma.a
Planning problem in GOLOG
Planning problems are typically hard
Too hard for blind search

Too hard for Resolution alone

Not to mention that entailment in FOL is undecidable

In search: heuristics

e In FOL: while —Goal do ma.[Acceptable(a)?; a],
where Acceptable(a) describes domain-dependent guidance.

Vitaliy Batusov vbatusov@cse.yorku.ca (Yo EECS 3401 Lecture 17 November 16, 2020

